I'm trying to come up with an elegant way to handle some generated polynomials. Here's the situation we'll focus on (exclusively) for this question:
Since this particular code example generates x_1 .. x_n, I'll explain how they're found in the code. The points are evenly spaced x_j = j * elementSize / order
apart, where n = order + 1
.
I generate a Func<double, double>
to evaluate this polynomial¹.
private static Func<double, double> GeneratePsi(double elementSize, int order, int i)
{
if (order < 1)
throw new ArgumentOutOfRangeException("order", "order must be greater than 0.");
if (i < 0)
throw new ArgumentOutOfRangeException("i", "i cannot be less than zero.");
if (i > order)
throw new ArgumentException("i", "i cannot be greater than order");
ParameterExpression xp = Expression.Parameter(typeof(double), "x");
// generate the terms of the factored polynomial in form (x_j - x)
List<Expression> factors = new List<Expression>();
for (int j = 0; j <= order; j++)
{
if (j == i)
continue;
double p = j * elementSize / order;
factors.Add(Expression.Subtract(Expression.Constant(p), xp));
}
// evaluate the result at the point x_i to get scaleInv=1.0/scale.
double xi = i * elementSize / order;
double scaleInv = Enumerable.Range(0, order + 1).Aggregate(0.0, (product, j) => product * (j == i ? 1.0 : (j * elementSize / order - xi)));
/* generate an expression to evaluate
* (x_0 - x) * (x_1 - x) .. (x_n - x) / (x_i - x)
* obviously the term (x_i - x) is cancelled in this result, but included here to make the result clear
*/
Expression expr = factors.Skip(1).Aggregate(factors[0], Expression.Multiply);
// multiplying by scale forces the condition f(x_i)=1
expr = Expression.Multiply(Expression.Constant(1.0 / scaleInv), expr);
Expression<Func<double, double>> lambdaMethod = Expression.Lambda<Func<double, double>>(expr, xp);
return lambdaMethod.Compile();
}
The problem: I also need to evaluate ψ′=dψ/dx. To do this, I can rewrite ψ=scale×(x_0 - x)(x_1 - x)×..×(x_n - x)/(x_i - x) in the form ψ=α_n×x^n + α_n×x^(n-1) + .. + α_1×x + α_0. This gives ψ′=n×α_n×x^(n-1) + (n-1)×α_n×x^(n-2) + .. + 1×α_1.
For computational reasons, we can rewrite the final answer without calls to Math.Pow
by writing ψ′=x×(x×(x×(..) - β_2) - β_1) - β_0.
To do all this "trickery" (all very basic algebra), I need a clean way to:
Expression
containing ConstantExpression
and ParameterExpression
leaves and basic mathematical operations (end up either BinaryExpression
with the NodeType
set to the operation) - the result here can include InvocationExpression
elements to the MethodInfo
for Math.Pow
which we'll handle in a special manner throughout.ParameterExpression
. Terms in the result where the right hand side parameter to an invocation of Math.Pow
was the constant 2 are replaced by the ConstantExpression(2)
multiplied by what was the left hand side (the invocation of Math.Pow(x,1)
is removed). Terms in the result that become zero because they were constant with respect to x are removed.ParameterExpression
where they occur as the left hand side parameter to an invocation of Math.Pow
. When the right hand side of the invocation becomes a ConstantExpression
with the value 1
, we replace the invocation with just the ParameterExpression
itself.¹ In the future, I'd like the method to take a ParameterExpression
and return an Expression
that evaluates based on that parameter. That way I can aggregate generated functions. I'm not there yet.
² In the future, I hope to release a general library for working with LINQ Expressions as symbolic math.
To evaluate any polynomial, you substitute the given values for the variable and perform the computation to simplify the polynomial to a numerical value. The order of operations and integer operations must be properly applied to correctly evaluate a polynomial.
For a large class of polynomials, the standard method of polynomial evaluation, Horner's method, can be very inaccurate. The alternative method given here is on average 100 to 1000 times more accurate than Horner's Method. The number of floating point operations is twice that of Horner's method for a single evaluation.
I wrote the basics of several symbolic math features using the ExpressionVisitor type in .NET 4. It's not perfect, but it looks like the foundation of a viable solution.
Symbolic
is a public static class exposing methods like Expand
, Simplify
, and PartialDerivative
ExpandVisitor
is an internal helper type that expands expressionsSimplifyVisitor
is an internal helper type that simplifies expressionsDerivativeVisitor
is an internal helper type that takes the derivative of an expressionListPrintVisitor
is an internal helper type that converts an Expression
to a prefix notation with a Lisp syntaxSymbolic
public static class Symbolic
{
public static Expression Expand(Expression expression)
{
return new ExpandVisitor().Visit(expression);
}
public static Expression Simplify(Expression expression)
{
return new SimplifyVisitor().Visit(expression);
}
public static Expression PartialDerivative(Expression expression, ParameterExpression parameter)
{
bool totalDerivative = false;
return new DerivativeVisitor(parameter, totalDerivative).Visit(expression);
}
public static string ToString(Expression expression)
{
ConstantExpression result = (ConstantExpression)new ListPrintVisitor().Visit(expression);
return result.Value.ToString();
}
}
ExpandVisitor
internal class ExpandVisitor : ExpressionVisitor
{
protected override Expression VisitBinary(BinaryExpression node)
{
var left = Visit(node.Left);
var right = Visit(node.Right);
if (node.NodeType == ExpressionType.Multiply)
{
Expression[] leftNodes = GetAddedNodes(left).ToArray();
Expression[] rightNodes = GetAddedNodes(right).ToArray();
var result =
leftNodes
.SelectMany(x => rightNodes.Select(y => Expression.Multiply(x, y)))
.Aggregate((sum, term) => Expression.Add(sum, term));
return result;
}
if (node.Left == left && node.Right == right)
return node;
return Expression.MakeBinary(node.NodeType, left, right, node.IsLiftedToNull, node.Method, node.Conversion);
}
/// <summary>
/// Treats the <paramref name="node"/> as the sum (or difference) of one or more child nodes and returns the
/// the individual addends in the sum.
/// </summary>
private static IEnumerable<Expression> GetAddedNodes(Expression node)
{
BinaryExpression binary = node as BinaryExpression;
if (binary != null)
{
switch (binary.NodeType)
{
case ExpressionType.Add:
foreach (var n in GetAddedNodes(binary.Left))
yield return n;
foreach (var n in GetAddedNodes(binary.Right))
yield return n;
yield break;
case ExpressionType.Subtract:
foreach (var n in GetAddedNodes(binary.Left))
yield return n;
foreach (var n in GetAddedNodes(binary.Right))
yield return Expression.Negate(n);
yield break;
default:
break;
}
}
yield return node;
}
}
DerivativeVisitor
internal class DerivativeVisitor : ExpressionVisitor
{
private ParameterExpression _parameter;
private bool _totalDerivative;
public DerivativeVisitor(ParameterExpression parameter, bool totalDerivative)
{
if (_totalDerivative)
throw new NotImplementedException();
_parameter = parameter;
_totalDerivative = totalDerivative;
}
protected override Expression VisitBinary(BinaryExpression node)
{
switch (node.NodeType)
{
case ExpressionType.Add:
case ExpressionType.Subtract:
return Expression.MakeBinary(node.NodeType, Visit(node.Left), Visit(node.Right));
case ExpressionType.Multiply:
return Expression.Add(Expression.Multiply(node.Left, Visit(node.Right)), Expression.Multiply(Visit(node.Left), node.Right));
case ExpressionType.Divide:
return Expression.Divide(Expression.Subtract(Expression.Multiply(Visit(node.Left), node.Right), Expression.Multiply(node.Left, Visit(node.Right))), Expression.Power(node.Right, Expression.Constant(2)));
case ExpressionType.Power:
if (node.Right is ConstantExpression)
{
return Expression.Multiply(node.Right, Expression.Multiply(Visit(node.Left), Expression.Subtract(node.Right, Expression.Constant(1))));
}
else if (node.Left is ConstantExpression)
{
return Expression.Multiply(node, MathExpressions.Log(node.Left));
}
else
{
return Expression.Multiply(node, Expression.Add(
Expression.Multiply(Visit(node.Left), Expression.Divide(node.Right, node.Left)),
Expression.Multiply(Visit(node.Right), MathExpressions.Log(node.Left))
));
}
default:
throw new NotImplementedException();
}
}
protected override Expression VisitConstant(ConstantExpression node)
{
return MathExpressions.Zero;
}
protected override Expression VisitInvocation(InvocationExpression node)
{
MemberExpression memberExpression = node.Expression as MemberExpression;
if (memberExpression != null)
{
var member = memberExpression.Member;
if (member.DeclaringType != typeof(Math))
throw new NotImplementedException();
switch (member.Name)
{
case "Log":
return Expression.Divide(Visit(node.Expression), node.Expression);
case "Log10":
return Expression.Divide(Visit(node.Expression), Expression.Multiply(Expression.Constant(Math.Log(10)), node.Expression));
case "Exp":
case "Sin":
case "Cos":
default:
throw new NotImplementedException();
}
}
throw new NotImplementedException();
}
protected override Expression VisitParameter(ParameterExpression node)
{
if (node == _parameter)
return MathExpressions.One;
return MathExpressions.Zero;
}
}
SimplifyVisitor
internal class SimplifyVisitor : ExpressionVisitor
{
protected override Expression VisitBinary(BinaryExpression node)
{
var left = Visit(node.Left);
var right = Visit(node.Right);
ConstantExpression leftConstant = left as ConstantExpression;
ConstantExpression rightConstant = right as ConstantExpression;
if (leftConstant != null && rightConstant != null
&& (leftConstant.Value is double) && (rightConstant.Value is double))
{
double leftValue = (double)leftConstant.Value;
double rightValue = (double)rightConstant.Value;
switch (node.NodeType)
{
case ExpressionType.Add:
return Expression.Constant(leftValue + rightValue);
case ExpressionType.Subtract:
return Expression.Constant(leftValue - rightValue);
case ExpressionType.Multiply:
return Expression.Constant(leftValue * rightValue);
case ExpressionType.Divide:
return Expression.Constant(leftValue / rightValue);
default:
throw new NotImplementedException();
}
}
switch (node.NodeType)
{
case ExpressionType.Add:
if (IsZero(left))
return right;
if (IsZero(right))
return left;
break;
case ExpressionType.Subtract:
if (IsZero(left))
return Expression.Negate(right);
if (IsZero(right))
return left;
break;
case ExpressionType.Multiply:
if (IsZero(left) || IsZero(right))
return MathExpressions.Zero;
if (IsOne(left))
return right;
if (IsOne(right))
return left;
break;
case ExpressionType.Divide:
if (IsZero(right))
throw new DivideByZeroException();
if (IsZero(left))
return MathExpressions.Zero;
if (IsOne(right))
return left;
break;
default:
throw new NotImplementedException();
}
return Expression.MakeBinary(node.NodeType, left, right);
}
protected override Expression VisitUnary(UnaryExpression node)
{
var operand = Visit(node.Operand);
ConstantExpression operandConstant = operand as ConstantExpression;
if (operandConstant != null && (operandConstant.Value is double))
{
double operandValue = (double)operandConstant.Value;
switch (node.NodeType)
{
case ExpressionType.Negate:
if (operandValue == 0.0)
return MathExpressions.Zero;
return Expression.Constant(-operandValue);
default:
throw new NotImplementedException();
}
}
switch (node.NodeType)
{
case ExpressionType.Negate:
if (operand.NodeType == ExpressionType.Negate)
{
return ((UnaryExpression)operand).Operand;
}
break;
default:
throw new NotImplementedException();
}
return Expression.MakeUnary(node.NodeType, operand, node.Type);
}
private static bool IsZero(Expression expression)
{
ConstantExpression constant = expression as ConstantExpression;
if (constant != null)
{
if (constant.Value.Equals(0.0))
return true;
}
return false;
}
private static bool IsOne(Expression expression)
{
ConstantExpression constant = expression as ConstantExpression;
if (constant != null)
{
if (constant.Value.Equals(1.0))
return true;
}
return false;
}
}
ListPrintVisitor
internal class ListPrintVisitor : ExpressionVisitor
{
protected override Expression VisitBinary(BinaryExpression node)
{
string op = null;
switch (node.NodeType)
{
case ExpressionType.Add:
op = "+";
break;
case ExpressionType.Subtract:
op = "-";
break;
case ExpressionType.Multiply:
op = "*";
break;
case ExpressionType.Divide:
op = "/";
break;
default:
throw new NotImplementedException();
}
var left = Visit(node.Left);
var right = Visit(node.Right);
string result = string.Format("({0} {1} {2})", op, ((ConstantExpression)left).Value, ((ConstantExpression)right).Value);
return Expression.Constant(result);
}
protected override Expression VisitConstant(ConstantExpression node)
{
if (node.Value is string)
return node;
return Expression.Constant(node.Value.ToString());
}
protected override Expression VisitParameter(ParameterExpression node)
{
return Expression.Constant(node.Name);
}
}
[TestMethod]
public void BasicSymbolicTest()
{
ParameterExpression x = Expression.Parameter(typeof(double), "x");
Expression linear = Expression.Add(Expression.Constant(3.0), x);
Assert.AreEqual("(+ 3 x)", Symbolic.ToString(linear));
Expression quadratic = Expression.Multiply(linear, Expression.Add(Expression.Constant(2.0), x));
Assert.AreEqual("(* (+ 3 x) (+ 2 x))", Symbolic.ToString(quadratic));
Expression expanded = Symbolic.Expand(quadratic);
Assert.AreEqual("(+ (+ (+ (* 3 2) (* 3 x)) (* x 2)) (* x x))", Symbolic.ToString(expanded));
Assert.AreEqual("(+ (+ (+ 6 (* 3 x)) (* x 2)) (* x x))", Symbolic.ToString(Symbolic.Simplify(expanded)));
Expression derivative = Symbolic.PartialDerivative(expanded, x);
Assert.AreEqual("(+ (+ (+ (+ (* 3 0) (* 0 2)) (+ (* 3 1) (* 0 x))) (+ (* x 0) (* 1 2))) (+ (* x 1) (* 1 x)))", Symbolic.ToString(derivative));
Expression simplified = Symbolic.Simplify(derivative);
Assert.AreEqual("(+ 5 (+ x x))", Symbolic.ToString(simplified));
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With