Check out this question:
Swift probability of random number being selected?
The top answer suggests to use a switch statement, which does the job. However, if I have a very large number of cases to consider, the code looks very inelegant; I have a giant switch statement with very similar code in each case repeated over and over again.
Is there a nicer, cleaner way to pick a random number with a certain probability when you have a large number of probabilities to consider? (like ~30)
Use rand to generate 1000 random numbers from the uniform distribution on the interval (0,1). rng('default') % For reproducibility u = rand(1000,1); The inversion method relies on the principle that continuous cumulative distribution functions (cdfs) range uniformly over the open interval (0,1).
To generate a list of random numbers: We can use the RAND function to generate a list of random numbers in Excel. It can be done by filling the first cell with =RAND() and dragging the fill handle till the cell we want, as shown.
If we want to generate a random sample according to a distribution F, we can generate a uniform random number on (0,1) and invert it by F. This is due to the fact that, if U is uniform on (0,1), then X=F−1(U) is a random variable that follows F.
An array of random Gaussian values can be generated using the randn() NumPy function. This function takes a single argument to specify the size of the resulting array. The Gaussian values are drawn from a standard Gaussian distribution; this is a distribution that has a mean of 0.0 and a standard deviation of 1.0.
This is a Swift implementation strongly influenced by the various answers to Generate random numbers with a given (numerical) distribution.
For Swift 4.2/Xcode 10 and later (explanations inline):
func randomNumber(probabilities: [Double]) -> Int {
// Sum of all probabilities (so that we don't have to require that the sum is 1.0):
let sum = probabilities.reduce(0, +)
// Random number in the range 0.0 <= rnd < sum :
let rnd = Double.random(in: 0.0 ..< sum)
// Find the first interval of accumulated probabilities into which `rnd` falls:
var accum = 0.0
for (i, p) in probabilities.enumerated() {
accum += p
if rnd < accum {
return i
}
}
// This point might be reached due to floating point inaccuracies:
return (probabilities.count - 1)
}
Examples:
let x = randomNumber(probabilities: [0.2, 0.3, 0.5])
returns 0 with probability 0.2, 1 with probability 0.3, and 2 with probability 0.5.
let x = randomNumber(probabilities: [1.0, 2.0])
return 0 with probability 1/3 and 1 with probability 2/3.
For Swift 3/Xcode 8:
func randomNumber(probabilities: [Double]) -> Int {
// Sum of all probabilities (so that we don't have to require that the sum is 1.0):
let sum = probabilities.reduce(0, +)
// Random number in the range 0.0 <= rnd < sum :
let rnd = sum * Double(arc4random_uniform(UInt32.max)) / Double(UInt32.max)
// Find the first interval of accumulated probabilities into which `rnd` falls:
var accum = 0.0
for (i, p) in probabilities.enumerated() {
accum += p
if rnd < accum {
return i
}
}
// This point might be reached due to floating point inaccuracies:
return (probabilities.count - 1)
}
For Swift 2/Xcode 7:
func randomNumber(probabilities probabilities: [Double]) -> Int {
// Sum of all probabilities (so that we don't have to require that the sum is 1.0):
let sum = probabilities.reduce(0, combine: +)
// Random number in the range 0.0 <= rnd < sum :
let rnd = sum * Double(arc4random_uniform(UInt32.max)) / Double(UInt32.max)
// Find the first interval of accumulated probabilities into which `rnd` falls:
var accum = 0.0
for (i, p) in probabilities.enumerate() {
accum += p
if rnd < accum {
return i
}
}
// This point might be reached due to floating point inaccuracies:
return (probabilities.count - 1)
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With