Say I have an array of arbitrary size holding single characters. I want to compute all possible combinations of those characters up to an arbitrary length.
So lets say my array is [1, 2, 3]. The user-specified length is 2. Then the possible combinations are [11, 22, 33, 12, 13, 23, 21, 31, 32].
I'm having real trouble finding a suitable algorithm that allows arbitrary lengths and not just permutates the array. Oh and while speed is not absolutely critical, it should be reasonably fast too.
This gives that the number of combinations that are possible with the alphabet, or 26 letters, without repetition is 67,108,863.
Save this answer. Show activity on this post. For each character, you have 26 letters + 10 digits = 36 possible choices. Therefore, the total number of combinations is 369, which is a really big number.
Just do an add with carry.
Say your array contained 4 symbols and you want ones of length 3.
Start with 000 (i.e. each symbol on your word = alphabet[0])
Then add up:
000 001 002 003 010 011 ...
The algorithm (given these indices) is just to increase the lowest number. If it reaches the number of symbols in your alphabet, increase the previous number (following the same rule) and set the current to 0.
C++ code:
int N_LETTERS = 4;
char alphabet[] = {'a', 'b', 'c', 'd'};
std::vector<std::string> get_all_words(int length)
{
std::vector<int> index(length, 0);
std::vector<std::string> words;
while(true)
{
std::string word(length);
for (int i = 0; i < length; ++i)
word[i] = alphabet[index[i]];
words.push_back(word);
for (int i = length-1; ; --i)
{
if (i < 0) return words;
index[i]++;
if (index[i] == N_LETTERS)
index[i] = 0;
else
break;
}
}
}
Code is untested, but should do the trick.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With