What's the best algorithm to find all binary strings of length n that contain k bits set? For example, if n=4 and k=3, there are...
0111 1011 1101 1110
I need a good way to generate these given any n and any k so I'd prefer it to be done with strings.
At each position of the string there can only be two possibilities, i.e., 0 or 1. Therefore, the total number of permutation of 0 and 1 in a string of length N is given by 2*2*2*… (N times), i.e., 2^N.
This method will generate all integers with exactly N '1' bits.
From https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
Compute the lexicographically next bit permutation
Suppose we have a pattern of N bits set to 1 in an integer and we want the next permutation of N 1 bits in a lexicographical sense. For example, if N is 3 and the bit pattern is
00010011
, the next patterns would be00010101
,00010110
,00011001
,00011010
,00011100
,00100011
, and so forth. The following is a fast way to compute the next permutation.unsigned int v; // current permutation of bits unsigned int w; // next permutation of bits unsigned int t = v | (v - 1); // t gets v's least significant 0 bits set to 1 // Next set to 1 the most significant bit to change, // set to 0 the least significant ones, and add the necessary 1 bits. w = (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctz(v) + 1));
The
__builtin_ctz(v)
GNU C compiler intrinsic for x86 CPUs returns the number of trailing zeros. If you are using Microsoft compilers for x86, the intrinsic is_BitScanForward
. These both emit absf
instruction, but equivalents may be available for other architectures. If not, then consider using one of the methods for counting the consecutive zero bits mentioned earlier. Here is another version that tends to be slower because of its division operator, but it does not require counting the trailing zeros.unsigned int t = (v | (v - 1)) + 1; w = t | ((((t & -t) / (v & -v)) >> 1) - 1);
Thanks to Dario Sneidermanis of Argentina, who provided this on November 28, 2009.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With