Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Generate A Weighted Random Number

I'm trying to devise a (good) way to choose a random number from a range of possible numbers where each number in the range is given a weight. To put it simply: given the range of numbers (0,1,2) choose a number where 0 has an 80% probability of being selected, 1 has a 10% chance and 2 has a 10% chance.

It's been about 8 years since my college stats class, so you can imagine the proper formula for this escapes me at the moment.

Here's the 'cheap and dirty' method that I came up with. This solution uses ColdFusion. Yours may use whatever language you'd like. I'm a programmer, I think I can handle porting it. Ultimately my solution needs to be in Groovy - I wrote this one in ColdFusion because it's easy to quickly write/test in CF.

public function weightedRandom( Struct options ) {

    var tempArr = [];

    for( var o in arguments.options )
    {
        var weight = arguments.options[ o ] * 10;
        for ( var i = 1; i<= weight; i++ )
        {
            arrayAppend( tempArr, o );
        }
    }
    return tempArr[ randRange( 1, arrayLen( tempArr ) ) ];
}

// test it
opts = { 0=.8, 1=.1, 2=.1  };

for( x = 1; x<=10; x++ )
{
    writeDump( weightedRandom( opts ) );    
}

I'm looking for better solutions, please suggest improvements or alternatives.

like image 769
Todd Sharp Avatar asked Dec 08 '11 17:12

Todd Sharp


People also ask

How does Python generate weighted random numbers?

Use the random. choices() Function to Generate Weighted Random Choices. Here, the random module of Python is used to make random numbers. In the choices() function, weighted random choices are made with a replacement.

What is a weighted random sample?

In weighted random sampling (WRS) the items are weighted and the probability of each item to be selected is determined by its relative weight.

How do you generate a random number in C++?

One way to generate these numbers in C++ is to use the function rand(). Rand is defined as: #include <cstdlib> int rand(); The rand function takes no arguments and returns an integer that is a pseudo-random number between 0 and RAND_MAX.


2 Answers

Rejection sampling (such as in your solution) is the first thing that comes to mind, whereby you build a lookup table with elements populated by their weight distribution, then pick a random location in the table and return it. As an implementation choice, I would make a higher order function which takes a spec and returns a function which returns values based on the distribution in the spec, this way you avoid having to build the table for each call. The downsides are that the algorithmic performance of building the table is linear by the number of items and there could potentially be a lot of memory usage for large specs (or those with members with very small or precise weights, e.g. {0:0.99999, 1:0.00001}). The upside is that picking a value has constant time, which might be desirable if performance is critical. In JavaScript:

function weightedRand(spec) {
  var i, j, table=[];
  for (i in spec) {
    // The constant 10 below should be computed based on the
    // weights in the spec for a correct and optimal table size.
    // E.g. the spec {0:0.999, 1:0.001} will break this impl.
    for (j=0; j<spec[i]*10; j++) {
      table.push(i);
    }
  }
  return function() {
    return table[Math.floor(Math.random() * table.length)];
  }
}
var rand012 = weightedRand({0:0.8, 1:0.1, 2:0.1});
rand012(); // random in distribution...

Another strategy is to pick a random number in [0,1) and iterate over the weight specification summing the weights, if the random number is less than the sum then return the associated value. Of course, this assumes that the weights sum to one. This solution has no up-front costs but has average algorithmic performance linear by the number of entries in the spec. For example, in JavaScript:

function weightedRand2(spec) {
  var i, sum=0, r=Math.random();
  for (i in spec) {
    sum += spec[i];
    if (r <= sum) return i;
  }
}
weightedRand2({0:0.8, 1:0.1, 2:0.1}); // random in distribution...
like image 76
maerics Avatar answered Oct 05 '22 20:10

maerics


Generate a random number R between 0 and 1.

If R in [0, 0.1) -> 1

If R in [0.1, 0.2) -> 2

If R in [0.2, 1] -> 3

If you can't directly get a number between 0 and 1, generate a number in a range that will produce as much precision as you want. For example, if you have the weights for

(1, 83.7%) and (2, 16.3%), roll a number from 1 to 1000. 1-837 is a 1. 838-1000 is 2.

like image 19
Thomas Eding Avatar answered Oct 05 '22 19:10

Thomas Eding