How can I randomly shuffle a list so that none of the elements remains in its original position?
In other words, given a list A
with distinct elements, I'd like to generate a permutation B
of it so that
n
, a[n] != b[n]
e.g.
a = [1,2,3,4]
b = [4,1,2,3] # good
b = [4,2,1,3] # good
a = [1,2,3,4]
x = [2,4,3,1] # bad
I don't know the proper term for such a permutation (is it "total"?) thus having a hard time googling. The correct term appears to be "derangement".
How to generate derangement? The faster way to generate the list of derangements of a set is to list the permutations and remove those with fixed points (elements having an identical position in the permutation and in the starting position).
A derangement can also be called a permutation with no fixed points. objects is given by the formula Dn=n! n∑k=0(−1)kk!
After some research I was able to implement the "early refusal" algorithm as described e.g. in this paper. It goes like this:
import random
def random_derangement(n):
while True:
v = [i for i in range(n)]
for j in range(n - 1, -1, -1):
p = random.randint(0, j)
if v[p] == j:
break
else:
v[j], v[p] = v[p], v[j]
else:
if v[0] != 0:
return tuple(v)
The idea is: we keep shuffling the array, once we find that the permutation we're working on is not valid (v[i]==i
), we break and start from scratch.
A quick test shows that this algorithm generates all derangements uniformly:
N = 4
# enumerate all derangements for testing
import itertools
counter = {}
for p in itertools.permutations(range(N)):
if all(p[i] != i for i in p):
counter[p] = 0
# make M probes for each derangement
M = 5000
for _ in range(M*len(counter)):
# generate a random derangement
p = random_derangement(N)
# is it really?
assert p in counter
# ok, record it
counter[p] += 1
# the distribution looks uniform
for p, c in sorted(counter.items()):
print p, c
Results:
(1, 0, 3, 2) 4934
(1, 2, 3, 0) 4952
(1, 3, 0, 2) 4980
(2, 0, 3, 1) 5054
(2, 3, 0, 1) 5032
(2, 3, 1, 0) 5053
(3, 0, 1, 2) 4951
(3, 2, 0, 1) 5048
(3, 2, 1, 0) 4996
I choose this algorithm for simplicity, this presentation briefly outlines other ideas.
Such permutations are called derangements. In practice you can just try random permutations until hitting a derangement, their ratio approaches the inverse of 'e' as 'n' grows.
As a possible starting point, the Fisher-Yates shuffle goes like this.
def swap(xs, a, b):
xs[a], xs[b] = xs[b], xs[a]
def permute(xs):
for a in xrange(len(xs)):
b = random.choice(xrange(a, len(xs)))
swap(xs, a, b)
Perhaps this will do the trick?
def derange(xs):
for a in xrange(len(xs) - 1):
b = random.choice(xrange(a + 1, len(xs) - 1))
swap(xs, a, b)
swap(len(xs) - 1, random.choice(xrange(n - 1))
Here's the version described by Vatine:
def derange(xs):
for a in xrange(1, len(xs)):
b = random.choice(xrange(0, a))
swap(xs, a, b)
return xs
A quick statistical test:
from collections import Counter
def test(n):
derangements = (tuple(derange(range(n))) for _ in xrange(10000))
for k,v in Counter(derangements).iteritems():
print('{} {}').format(k, v)
test(4)
:
(1, 3, 0, 2) 1665
(2, 0, 3, 1) 1702
(3, 2, 0, 1) 1636
(1, 2, 3, 0) 1632
(3, 0, 1, 2) 1694
(2, 3, 1, 0) 1671
This does appear uniform over its range, and it has the nice property that each element has an equal chance to appear in each allowed slot.
But unfortunately it doesn't include all of the derangements. There are 9 derangements of size 4. (The formula and an example for n=4 are given on the Wikipedia article).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With