I have a TimeDelta column with values that look like this:
2 days 21:54:00.000000000
I would like to have a float representing the number of days, let's say here 2+21/24 = 2.875, neglecting the minutes. Is there a simple way to do this ? I saw an answer suggesting
res['Ecart_lacher_collecte'].apply(lambda x: float(x.item().days+x.item().hours/24.))
But I get "AttributeError: 'str' object has no attribute 'item' "
Numpy version is '1.10.4' Pandas version is u'0.17.1'
The columns has originally been obtained with:
lac['DateHeureLacher'] = pd.to_datetime(lac['Date lacher']+' '+lac['Heure lacher'],format='%d/%m/%Y %H:%M:%S') cap['DateCollecte'] = pd.to_datetime(cap['Date de collecte']+' '+cap['Heure de collecte'],format='%d/%m/%Y %H:%M:%S')
in a first script. Then in a second one:
res = pd.merge(lac, cap, how='inner', on=['Loc']) res['DateHeureLacher'] = pd.to_datetime(res['DateHeureLacher'],format='%Y-%m-%d %H:%M:%S') res['DateCollecte'] = pd.to_datetime(res['DateCollecte'],format='%Y-%m-%d %H:%M:%S') res['Ecart_lacher_collecte'] = res['DateCollecte'] - res['DateHeureLacher']
Maybe saving it to csv change their types back to string? The transformation I'm trying to do is in a third script.
Sexe_x PiegeLacher latL longL Loc Col_x DateHeureLacher Nb envolees PiegeCapture latC longC Col_y Sexe_y Effectif DateCollecte DatePose Ecart_lacher_collecte Dist_m M Q0-002 1629238 237877 H Rouge 2011-02-04 17:15:00 928 Q0-002 1629238 237877 Rouge M 1 2011-02-07 15:09:00 2011-02-07 12:14:00 2 days 21:54:00.000000000 0 M Q0-002 1629238 237877 H Rouge 2011-02-04 17:15:00 928 Q0-002 1629238 237877 Rouge M 4 2011-02-07 12:14:00 2011-02-07 09:42:00 2 days 18:59:00.000000000 0 M Q0-002 1629238 237877 H Rouge 2011-02-04 17:15:00 928 Q0-003 1629244 237950 Rouge M 1 2011-02-07 15:10:00 2011-02-07 12:16:00 2 days 21:55:00.000000000 75
res.info():
Sexe_x 922 non-null object PiegeLacher 922 non-null object latL 922 non-null int64 longL 922 non-null int64 Loc 922 non-null object Col_x 922 non-null object DateHeureLacher 922 non-null object Nb envolees 922 non-null int64 PiegeCapture 922 non-null object latC 922 non-null int64 longC 922 non-null int64 Col_y 922 non-null object Sexe_y 922 non-null object Effectif 922 non-null int64 DateCollecte 922 non-null object DatePose 922 non-null object Ecart_lacher_collecte 922 non-null object Dist_m 922 non-null int64
from datetime import timedelta,datetime x1= timedelta(seconds=40, minutes=40, hours=5) x2= timedelta( seconds=50, minutes=20, hours=4) x3=x1-x2 x5 = x3. total_seconds() print(x5) print(type(x5)) print(type(x1)) print(x1) # if you are working with Dataframe then use loop (* for-loop).
We can follow the same logic to convert a timedelta to hours. Instead of dividing the total_seconds() by the number of seconds in a minute, or dividing the timedelta object by timedelta(minutes=1) , we do it for hour.
You can use pd.to_timedelta
or np.timedelta64
to define a duration and divide by this:
# set up as per @EdChum df['total_days_td'] = df['time_delta'] / pd.to_timedelta(1, unit='D') df['total_days_td'] = df['time_delta'] / np.timedelta64(1, 'D')
You can use dt.total_seconds
and divide this by the total number of seconds in a day, example:
In [25]: df = pd.DataFrame({'dates':pd.date_range(dt.datetime(2016,1,1, 12,15,3), periods=10)}) df Out[25]: dates 0 2016-01-01 12:15:03 1 2016-01-02 12:15:03 2 2016-01-03 12:15:03 3 2016-01-04 12:15:03 4 2016-01-05 12:15:03 5 2016-01-06 12:15:03 6 2016-01-07 12:15:03 7 2016-01-08 12:15:03 8 2016-01-09 12:15:03 9 2016-01-10 12:15:03 In [26]: df['time_delta'] = df['dates'] - pd.datetime(2015,11,6,8,10) df Out[26]: dates time_delta 0 2016-01-01 12:15:03 56 days 04:05:03 1 2016-01-02 12:15:03 57 days 04:05:03 2 2016-01-03 12:15:03 58 days 04:05:03 3 2016-01-04 12:15:03 59 days 04:05:03 4 2016-01-05 12:15:03 60 days 04:05:03 5 2016-01-06 12:15:03 61 days 04:05:03 6 2016-01-07 12:15:03 62 days 04:05:03 7 2016-01-08 12:15:03 63 days 04:05:03 8 2016-01-09 12:15:03 64 days 04:05:03 9 2016-01-10 12:15:03 65 days 04:05:03 In [27]: df['total_days_td'] = df['time_delta'].dt.total_seconds() / (24 * 60 * 60) df Out[27]: dates time_delta total_days_td 0 2016-01-01 12:15:03 56 days 04:05:03 56.170174 1 2016-01-02 12:15:03 57 days 04:05:03 57.170174 2 2016-01-03 12:15:03 58 days 04:05:03 58.170174 3 2016-01-04 12:15:03 59 days 04:05:03 59.170174 4 2016-01-05 12:15:03 60 days 04:05:03 60.170174 5 2016-01-06 12:15:03 61 days 04:05:03 61.170174 6 2016-01-07 12:15:03 62 days 04:05:03 62.170174 7 2016-01-08 12:15:03 63 days 04:05:03 63.170174 8 2016-01-09 12:15:03 64 days 04:05:03 64.170174 9 2016-01-10 12:15:03 65 days 04:05:03 65.170174
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With