I am analyzing the time series of an action (historical from 2000 to 2018). I want to be able to better analyze my time series (e.g. on a monthly, quarterly basis) by placing all the datetime data in a DatetimeIndex. How can I do it? Is it possible?
df.columns
Out[181]: Index(['Date', 'Price', 'Open', 'High', 'Low'], dtype='object')
df.index
Out[179]: RangeIndex(start=0, stop=4309, step=1)
df.info
[4309 rows x 5 columns]>
type(df)
Out[178]: pandas.core.frame.DataFrame
IIUC, you can just use:
df.set_index(pd.to_datetime(df['Date']))
Example:
>>> df
Date High Low Open Price
0 1998-12-12 5 -1 3 1
1 2004-11-11 6 -2 4 2
df = df.set_index(pd.to_datetime(df['Date']))
>>> df
Date High Low Open Price
Date
1998-12-12 1998-12-12 5 -1 3 1
2004-11-11 2004-11-11 6 -2 4 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With