Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Forward fill all except last value in python pandas dataframe

Tags:

python

pandas

I have a dataframe in pandas with several columns I want to forward fill the values for. At the moment I'm doing:

columns = ['a', 'b', 'c']
for column in columns:
    df[column].fillna(method='ffill', inplace=True)

...but because the series in the columns are different lengths, that leaves long tails of filled values on the ends of some of them. Because the gaps in the some of the series are quite large, I can't use the fillna's limit parameter without also leaving long tails of filled values on the series.

Is it possible to forward fill the values in each columns, except the last value? Thanks!

like image 590
user1684046 Avatar asked Apr 03 '16 17:04

user1684046


Video Answer


2 Answers

You can use last_valid_index in a lambda function to just ffill up to that point.

df = pd.DataFrame({
    'A': [1, None, None, None], 
    'B': [1, 2, None, None], 
    'C': [1, None, 3, None], 
    'D': [1, None, None, 4]})

>>> df
    A   B   C   D
0   1   1   1   1
1 NaN   2 NaN NaN
2 NaN NaN   3 NaN
3 NaN NaN NaN   4

>>> df.apply(lambda series: series.loc[:series.last_valid_index()].ffill())
    A   B   C  D
0   1   1   1  1
1 NaN   2   1  1
2 NaN NaN   3  1
3 NaN NaN NaN  4
like image 132
Alexander Avatar answered Nov 14 '22 22:11

Alexander


In addition to the answer from Alexander, you can use the following if you want to conserve bottom rows with NaNs:

df2 = pd.DataFrame({
    'A': [1, None, None, None, None], 
    'B': [1, 2, None, None, None], 
    'C': [1, None, 3, None, None], 
    'D': [1, None, None, 4, None]})

df2
    A   B   C   D
0   1   1   1   1
1 NaN   2 NaN NaN
2 NaN NaN   3 NaN
3 NaN NaN NaN   4
4 NaN NaN NaN NaN

pd.concat([df2.apply(lambda series: series.loc[:series.last_valid_index()].ffill()),
           df2.loc[df2.last_valid_index()+1:]])

    A   B   C   D
0   1.0 1.0 1.0 1.0
1   NaN 2.0 1.0 1.0
2   NaN NaN 3.0 1.0
3   NaN NaN NaN 4.0
4   NaN NaN NaN NaN
like image 33
Carsten Avatar answered Nov 14 '22 23:11

Carsten