I've created some tables in postgres, added a foreign key from one table to another and set ON DELETE to CASCADE. Strangely enough, I have some fields that appear to be violating this constraint.
Is this normal behaviour? And if so, is there a way to get the behaviour I want (no violations possible)?
Edit:
I orginaly created the foreign key as part of CREATE TABLE, just using
... REFERENCES product (id) ON UPDATE CASCADE ON DELETE CASCADE
The current code pgAdmin3 gives is
ALTER TABLE cultivar
ADD CONSTRAINT cultivar_id_fkey FOREIGN KEY (id)
REFERENCES product (id) MATCH SIMPLE
ON UPDATE CASCADE ON DELETE CASCADE;
Edit 2:
To Clarify, I have a sneaking suspicion that the constraints are only checked when updates/inserts happen but are then never looked at again. Unfortunately I don't know enough about postgres to find out if this is true or how fields could end up in the database without those checks being run.
If this is the case, is there some way to check all the foreign keys and fix those problems?
Edit 3:
A constraint violation can be caused by a faulty trigger, see below
I tried to create a simple example that shows foreign key constraint being enforced. With this example I prove I'm not allowed to enter data that violates the fk and I prove that if the fk is not in place during insert, and I enable the fk, the fk constraint throws an error telling me data violates the fk. So I'm not seeing how you have data in the table that violates a fk that is in place. I'm on 9.0, but this should not be different on 8.3. If you can show a working example that proves your issue that might help.
--CREATE TABLES--
CREATE TABLE parent
(
parent_id integer NOT NULL,
first_name character varying(50) NOT NULL,
CONSTRAINT pk_parent PRIMARY KEY (parent_id)
)
WITH (
OIDS=FALSE
);
ALTER TABLE parent OWNER TO postgres;
CREATE TABLE child
(
child_id integer NOT NULL,
parent_id integer NOT NULL,
first_name character varying(50) NOT NULL,
CONSTRAINT pk_child PRIMARY KEY (child_id),
CONSTRAINT fk1_child FOREIGN KEY (parent_id)
REFERENCES parent (parent_id) MATCH SIMPLE
ON UPDATE CASCADE ON DELETE CASCADE
)
WITH (
OIDS=FALSE
);
ALTER TABLE child OWNER TO postgres;
--CREATE TABLES--
--INSERT TEST DATA--
INSERT INTO parent(parent_id,first_name)
SELECT 1,'Daddy'
UNION
SELECT 2,'Mommy';
INSERT INTO child(child_id,parent_id,first_name)
SELECT 1,1,'Billy'
UNION
SELECT 2,1,'Jenny'
UNION
SELECT 3,1,'Kimmy'
UNION
SELECT 4,2,'Billy'
UNION
SELECT 5,2,'Jenny'
UNION
SELECT 6,2,'Kimmy';
--INSERT TEST DATA--
--SHOW THE DATA WE HAVE--
select parent.first_name,
child.first_name
from parent
inner join child
on child.parent_id = parent.parent_id
order by parent.first_name, child.first_name asc;
--SHOW THE DATA WE HAVE--
--DELETE PARENT WHO HAS CHILDREN--
BEGIN TRANSACTION;
delete from parent
where parent_id = 1;
--Check to see if any children that were linked to Daddy are still there?
--None there so the cascade delete worked.
select parent.first_name,
child.first_name
from parent
right outer join child
on child.parent_id = parent.parent_id
order by parent.first_name, child.first_name asc;
ROLLBACK TRANSACTION;
--TRY ALLOW NO REFERENTIAL DATA IN--
BEGIN TRANSACTION;
--Get rid of fk constraint so we can insert red headed step child
ALTER TABLE child DROP CONSTRAINT fk1_child;
INSERT INTO child(child_id,parent_id,first_name)
SELECT 7,99999,'Red Headed Step Child';
select parent.first_name,
child.first_name
from parent
right outer join child
on child.parent_id = parent.parent_id
order by parent.first_name, child.first_name asc;
--Will throw FK check violation because parent 99999 doesn't exist in parent table
ALTER TABLE child
ADD CONSTRAINT fk1_child FOREIGN KEY (parent_id)
REFERENCES parent (parent_id) MATCH SIMPLE
ON UPDATE CASCADE ON DELETE CASCADE;
ROLLBACK TRANSACTION;
--TRY ALLOW NO REFERENTIAL DATA IN--
--DROP TABLE parent;
--DROP TABLE child;
Everything I've read so far seems to suggest that constraints are only checked when the data is inserted. (Or when the constraint is created) For example the manual on set constraints.
This makes sense and - if the database works properly - should be good enough. I'm still curious how I managed to circumvent this or if I just read the situation wrong and there was never a real constraint violation to begin with.
Either way, case closed :-/
------- UPDATE --------
There was definitely a constraint violation, caused by a faulty trigger. Here's a script to replicate:
-- Create master table
CREATE TABLE product
(
id INT NOT NULL PRIMARY KEY
);
-- Create second table, referencing the first
CREATE TABLE example
(
id int PRIMARY KEY REFERENCES product (id) ON DELETE CASCADE
);
-- Create a (broken) trigger function
--CREATE LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION delete_product()
RETURNS trigger AS
$BODY$
BEGIN
DELETE FROM product WHERE product.id = OLD.id;
-- This is an error!
RETURN null;
END;
$BODY$
LANGUAGE plpgsql;
-- Add it to the second table
CREATE TRIGGER example_delete
BEFORE DELETE
ON example
FOR EACH ROW
EXECUTE PROCEDURE delete_product();
-- Now lets add a row
INSERT INTO product (id) VALUES (1);
INSERT INTO example (id) VALUES (1);
-- And now lets delete the row
DELETE FROM example WHERE id = 1;
/*
Now if everything is working, this should return two columns:
(pid,eid)=(1,1). However, it returns only the example id, so
(pid,eid)=(0,1). This means the foreign key constraint on the
example table is violated.
*/
SELECT product.id AS pid, example.id AS eid FROM product FULL JOIN example ON product.id = example.id;
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With