To create the new column 'Max', use df['Max'] = df. idxmax(axis=1) . To find the row index at which the maximum value occurs in each column, use df. idxmax() (or equivalently df.
If you want to recover the column header of the largest value in a row, you can use a combination of "INDEX", "MATCH" & "MAX" functions to extract the output. "INDEX": Returns a value or reference of the cell at the intersection of a particular row and column, in a given range.
max() in R The max() is a built-in R function that finds the maximum value of the vector or data frame. It takes the R object as an input and returns the maximum value out of it. To find the maximum value of vector elements, data frame, and columns, use the max() function.
One option using your data (for future reference, use set.seed()
to make examples using sample
reproducible):
DF <- data.frame(V1=c(2,8,1),V2=c(7,3,5),V3=c(9,6,4))
colnames(DF)[apply(DF,1,which.max)]
[1] "V3" "V1" "V2"
A faster solution than using apply
might be max.col
:
colnames(DF)[max.col(DF,ties.method="first")]
#[1] "V3" "V1" "V2"
...where ties.method
can be any of "random"
"first"
or "last"
This of course causes issues if you happen to have two columns which are equal to the maximum. I'm not sure what you want to do in that instance as you will have more than one result for some rows. E.g.:
DF <- data.frame(V1=c(2,8,1),V2=c(7,3,5),V3=c(7,6,4))
apply(DF,1,function(x) which(x==max(x)))
[[1]]
V2 V3
2 3
[[2]]
V1
1
[[3]]
V2
2
If you're interested in a data.table
solution, here's one. It's a bit tricky since you prefer to get the id for the first maximum. It's much easier if you'd rather want the last maximum. Nevertheless, it's not that complicated and it's fast!
Here I've generated data of your dimensions (26746 * 18).
set.seed(45)
DF <- data.frame(matrix(sample(10, 26746*18, TRUE), ncol=18))
data.table
answer:require(data.table)
DT <- data.table(value=unlist(DF, use.names=FALSE),
colid = 1:nrow(DF), rowid = rep(names(DF), each=nrow(DF)))
setkey(DT, colid, value)
t1 <- DT[J(unique(colid), DT[J(unique(colid)), value, mult="last"]), rowid, mult="first"]
# data.table solution
system.time({
DT <- data.table(value=unlist(DF, use.names=FALSE),
colid = 1:nrow(DF), rowid = rep(names(DF), each=nrow(DF)))
setkey(DT, colid, value)
t1 <- DT[J(unique(colid), DT[J(unique(colid)), value, mult="last"]), rowid, mult="first"]
})
# user system elapsed
# 0.174 0.029 0.227
# apply solution from @thelatemail
system.time(t2 <- colnames(DF)[apply(DF,1,which.max)])
# user system elapsed
# 2.322 0.036 2.602
identical(t1, t2)
# [1] TRUE
It's about 11 times faster on data of these dimensions, and data.table
scales pretty well too.
DT <- data.table(value=unlist(DF, use.names=FALSE),
colid = 1:nrow(DF), rowid = rep(names(DF), each=nrow(DF)))
setkey(DT, colid, value)
t1 <- DT[J(unique(colid)), rowid, mult="last"]
One solution could be to reshape the date from wide to long putting all the departments in one column and counts in another, group by the employer id (in this case, the row number), and then filter to the department(s) with the max value. There are a couple of options for handling ties with this approach too.
library(tidyverse)
# sample data frame with a tie
df <- data_frame(V1=c(2,8,1),V2=c(7,3,5),V3=c(9,6,5))
# If you aren't worried about ties:
df %>%
rownames_to_column('id') %>% # creates an ID number
gather(dept, cnt, V1:V3) %>%
group_by(id) %>%
slice(which.max(cnt))
# A tibble: 3 x 3
# Groups: id [3]
id dept cnt
<chr> <chr> <dbl>
1 1 V3 9.
2 2 V1 8.
3 3 V2 5.
# If you're worried about keeping ties:
df %>%
rownames_to_column('id') %>%
gather(dept, cnt, V1:V3) %>%
group_by(id) %>%
filter(cnt == max(cnt)) %>% # top_n(cnt, n = 1) also works
arrange(id)
# A tibble: 4 x 3
# Groups: id [3]
id dept cnt
<chr> <chr> <dbl>
1 1 V3 9.
2 2 V1 8.
3 3 V2 5.
4 3 V3 5.
# If you're worried about ties, but only want a certain department, you could use rank() and choose 'first' or 'last'
df %>%
rownames_to_column('id') %>%
gather(dept, cnt, V1:V3) %>%
group_by(id) %>%
mutate(dept_rank = rank(-cnt, ties.method = "first")) %>% # or 'last'
filter(dept_rank == 1) %>%
select(-dept_rank)
# A tibble: 3 x 3
# Groups: id [3]
id dept cnt
<chr> <chr> <dbl>
1 2 V1 8.
2 3 V2 5.
3 1 V3 9.
# if you wanted to keep the original wide data frame
df %>%
rownames_to_column('id') %>%
left_join(
df %>%
rownames_to_column('id') %>%
gather(max_dept, max_cnt, V1:V3) %>%
group_by(id) %>%
slice(which.max(max_cnt)),
by = 'id'
)
# A tibble: 3 x 6
id V1 V2 V3 max_dept max_cnt
<chr> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 2. 7. 9. V3 9.
2 2 8. 3. 6. V1 8.
3 3 1. 5. 5. V2 5.
Based on the above suggestions, the following data.table
solution worked very fast for me:
library(data.table)
set.seed(45)
DT <- data.table(matrix(sample(10, 10^7, TRUE), ncol=10))
system.time(
DT[, col_max := colnames(.SD)[max.col(.SD, ties.method = "first")]]
)
#> user system elapsed
#> 0.15 0.06 0.21
DT[]
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 col_max
#> 1: 7 4 1 2 3 7 6 6 6 1 V1
#> 2: 4 6 9 10 6 2 7 7 1 3 V4
#> 3: 3 4 9 8 9 9 8 8 6 7 V3
#> 4: 4 8 8 9 7 5 9 2 7 1 V4
#> 5: 4 3 9 10 2 7 9 6 6 9 V4
#> ---
#> 999996: 4 6 10 5 4 7 3 8 2 8 V3
#> 999997: 8 7 6 6 3 10 2 3 10 1 V6
#> 999998: 2 3 2 7 4 7 5 2 7 3 V4
#> 999999: 8 10 3 2 3 4 5 1 1 4 V2
#> 1000000: 10 4 2 6 6 2 8 4 7 4 V1
And also comes with the advantage that can always specify what columns .SD
should consider by mentioning them in .SDcols
:
DT[, MAX2 := colnames(.SD)[max.col(.SD, ties.method="first")], .SDcols = c("V9", "V10")]
In case we need the column name of the smallest value, as suggested by @lwshang, one just needs to use -.SD
:
DT[, col_min := colnames(.SD)[max.col(-.SD, ties.method = "first")]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With