Is there a way to flatten an arbitrarily nested Spark Dataframe? Most of the work I'm seeing is written for specific schema, and I'd like to be able to generically flatten a Dataframe with different nested types (e.g. StructType, ArrayType, MapType, etc).
Say I have a schema like:
StructType(List(StructField(field1,...), StructField(field2,...), ArrayType(StructType(List(StructField(nested_field1,...), StructField(nested_field2,...)),nested_array,...)))
Looking to adapt this into a flat table with a structure like:
field1
field2
nested_array.nested_field1
nested_array.nested_field2
FYI, looking for suggestions for Pyspark, but other flavors of Spark are also appreciated.
This issue might be a bit old, but for anyone out there still looking for a solution you can flatten complex data types inline using select *:
first let's create the nested dataframe:
from pyspark.sql import HiveContext
hc = HiveContext(sc)
nested_df = hc.read.json(sc.parallelize(["""
{
"field1": 1,
"field2": 2,
"nested_array":{
"nested_field1": 3,
"nested_field2": 4
}
}
"""]))
now to flatten it:
flat_df = nested_df.select("field1", "field2", "nested_array.*")
You'll find useful examples here: https://docs.databricks.com/delta/data-transformation/complex-types.html
If you have too many nested arrays, you can use:
flat_cols = [c[0] for c in nested_df.dtypes if c[1][:6] != 'struct']
nested_cols = [c[0] for c in nested_df.dtypes if c[1][:6] == 'struct']
flat_df = nested_df.select(*flat_cols, *[c + ".*" for c in nested_cols])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With