I am having some trouble translating my MATLAB code into Python via Scipy & Numpy. I am stuck on how to find optimal parameter values (k0 and k1) for my system of ODEs to fit to my ten observed data points. I currently have an initial guess for k0 and k1. In MATLAB, I can using something called 'fminsearch' which is a function that takes the system of ODEs, the observed data points, and the initial values of the system of ODEs. It will then calculate a new pair of parameters k0 and k1 that will fit the observed data. I have included my code to see if you can help me implement some kind of 'fminsearch' to find the optimal parameter values k0 and k1 that will fit my data. I want to add whatever code to do this to my lsqtest.py file.
I have three .py files - ode.py, lsq.py, and lsqtest.py
ode.py:
def f(y, t, k):
return (-k[0]*y[0],
k[0]*y[0]-k[1]*y[1],
k[1]*y[1])
lsq.py:
import pylab as py
import numpy as np
from scipy import integrate
from scipy import optimize
import ode
def lsq(teta,y0,data):
#INPUT teta, the unknowns k0,k1
# data, observed
# y0 initial values needed by the ODE
#OUTPUT lsq value
t = np.linspace(0,9,10)
y_obs = data #data points
k = [0,0]
k[0] = teta[0]
k[1] = teta[1]
#call the ODE solver to get the states:
r = integrate.odeint(ode.f,y0,t,args=(k,))
#the ODE system in ode.py
#at each row (time point), y_cal has
#the values of the components [A,B,C]
y_cal = r[:,1] #separate the measured B
#compute the expression to be minimized:
return sum((y_obs-y_cal)**2)
lsqtest.py:
import pylab as py
import numpy as np
from scipy import integrate
from scipy import optimize
import lsq
if __name__ == '__main__':
teta = [0.2,0.3] #guess for parameter values k0 and k1
y0 = [1,0,0] #initial conditions for system
y = [0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309] #observed data points
data = y
resid = lsq.lsq(teta,y0,data)
print resid
Look at the scipy.optimize
module. The minimize
function looks fairly similar to fminsearch
, and I believe that both basically use a simplex algorithm for optimization.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With