I am trying to find a curve fitting my data that visually seem to have a power law distribution.
I hoped to utilize scipy.optimize.curve_fit, but no matter what function or data normalization I try, I am getting either a RuntimeError (parameters not found or overflow) or a curve that does not fit my data even remotely. Please help me to figure out what I am doing wrong here.
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
df = pd.DataFrame({
'x': [ 1000, 3250, 5500, 10000, 32500, 55000, 77500, 100000, 200000 ],
'y': [ 1100, 500, 288, 200, 113, 67, 52, 44, 5 ]
})
df.plot(x='x', y='y', kind='line', style='--ro', figsize=(10, 5))
def func_powerlaw(x, m, c, c0):
return c0 + x**m * c
target_func = func_powerlaw
X = df['x']
y = df['y']
popt, pcov = curve_fit(target_func, X, y)
plt.figure(figsize=(10, 5))
plt.plot(X, target_func(X, *popt), '--')
plt.plot(X, y, 'ro')
plt.legend()
plt.show()
Output
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-243-17421b6b0c14> in <module>()
18 y = df['y']
19
---> 20 popt, pcov = curve_fit(target_func, X, y)
21
22 plt.figure(figsize=(10, 5))
/Users/evgenyp/.virtualenvs/kindle-dev/lib/python2.7/site-packages/scipy/optimize/minpack.pyc in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, **kwargs)
653 cost = np.sum(infodict['fvec'] ** 2)
654 if ier not in [1, 2, 3, 4]:
--> 655 raise RuntimeError("Optimal parameters not found: " + errmsg)
656 else:
657 res = least_squares(func, p0, args=args, bounds=bounds, method=method,
RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 800.
This Help Article tells you how to fit a power law or an exponential to a set of points. The power law has the form y = a x^b, and the exponential models y = a exp(b x). The power law or exponential increases faster than a linear function, and a simple least-squares method will fail to converge.
The SciPy open source library provides the curve_fit() function for curve fitting via nonlinear least squares. The function takes the same input and output data as arguments, as well as the name of the mapping function to use. The mapping function must take examples of input data and some number of arguments.
Your func_powerlaw
is not strictly a power law, as it has an additive constant.
Generally speaking, if you want a quick visual appraisal of a power law relation, you would
plot(log(x),log(y))
or
loglog(x,y)
Both of them should give a straight line, although there are subtle differences among them (in particular, regarding curve fitting).
All this without the additive constant, which messes up the power law relation.
If you want to fit a power law that weighs data according to the log-log scale (typically desirable), you can use code below.
import numpy as np
from scipy.optimize import curve_fit
def powlaw(x, a, b) :
return a * np.power(x, b)
def linlaw(x, a, b) :
return a + x * b
def curve_fit_log(xdata, ydata) :
"""Fit data to a power law with weights according to a log scale"""
# Weights according to a log scale
# Apply fscalex
xdata_log = np.log10(xdata)
# Apply fscaley
ydata_log = np.log10(ydata)
# Fit linear
popt_log, pcov_log = curve_fit(linlaw, xdata_log, ydata_log)
#print(popt_log, pcov_log)
# Apply fscaley^-1 to fitted data
ydatafit_log = np.power(10, linlaw(xdata_log, *popt_log))
# There is no need to apply fscalex^-1 as original data is already available
return (popt_log, pcov_log, ydatafit_log)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With