I have some 2D data (GPS data) with clusters (stop locations) that I know resemble Gaussians with a characteristic standard deviation (proportional to the inherent noise of GPS samples). The figure below visualizes a sample that I expect has two such clusters. The image is 25 meters wide and 13 meters tall.
The sklearn
module has a function sklearn.mixture.GaussianMixture
which allows you to fit a mixture of Gaussians to data. The function has a parameter, covariance_type
, that enables you to assume different things about the shape of the Gaussians. You can, for example, assume them to be uniform using the 'tied'
argument.
However, it does not appear directly possible to assume the covariance matrices to remain constant. From the sklearn
source code it seems trivial to make a modification that enables this but it feels a bit excessive to make a pull request with an update that allows this (also I don't want to accidentally add bugs in sklearn
). Is there a better way to fit a mixture to data where the covariance matrix of each Gaussian is fixed?
I want to assume that the SD should remain constant at around 3 meters for each component, since that is roughly the noise level of my GPS samples.
The covariance matrix of a Gaussian distribution determines the directions and lengths of the axes of its density contours, all of which are ellipsoids. These four types of mixture models can be illustrated in full generality using the two-dimensional case.
A Gaussian mixture model (GMM) attempts to find a mixture of multi-dimensional Gaussian probability distributions that best model any input dataset. In the simplest case, GMMs can be used for finding clusters in the same manner as k-means: from sklearn.mixture import GMM gmm = GMM(n_components=4). fit(X) labels = gmm.
Definitions. A Gaussian Mixture is a function that is comprised of several Gaussians, each identified by k ∈ {1,…, K}, where K is the number of clusters of our dataset. Each Gaussian k in the mixture is comprised of the following parameters: A mean μ that defines its centre.
It is simple enough to write your own implementation of EM algorithm. It would also give you a good intuition of the process. I assume that covariance is known and that prior probabilities of components are equal, and fit only means.
The class would look like this (in Python 3):
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
class FixedCovMixture:
""" The model to estimate gaussian mixture with fixed covariance matrix. """
def __init__(self, n_components, cov, max_iter=100, random_state=None, tol=1e-10):
self.n_components = n_components
self.cov = cov
self.random_state = random_state
self.max_iter = max_iter
self.tol=tol
def fit(self, X):
# initialize the process:
np.random.seed(self.random_state)
n_obs, n_features = X.shape
self.mean_ = X[np.random.choice(n_obs, size=self.n_components)]
# make EM loop until convergence
i = 0
for i in range(self.max_iter):
new_centers = self.updated_centers(X)
if np.sum(np.abs(new_centers-self.mean_)) < self.tol:
break
else:
self.mean_ = new_centers
self.n_iter_ = i
def updated_centers(self, X):
""" A single iteration """
# E-step: estimate probability of each cluster given cluster centers
cluster_posterior = self.predict_proba(X)
# M-step: update cluster centers as weighted average of observations
weights = (cluster_posterior.T / cluster_posterior.sum(axis=1)).T
new_centers = np.dot(weights, X)
return new_centers
def predict_proba(self, X):
likelihood = np.stack([multivariate_normal.pdf(X, mean=center, cov=self.cov)
for center in self.mean_])
cluster_posterior = (likelihood / likelihood.sum(axis=0))
return cluster_posterior
def predict(self, X):
return np.argmax(self.predict_proba(X), axis=0)
On the data like yours, the model would converge quickly:
np.random.seed(1)
X = np.random.normal(size=(100,2), scale=3)
X[50:] += (10, 5)
model = FixedCovMixture(2, cov=[[3,0],[0,3]], random_state=1)
model.fit(X)
print(model.n_iter_, 'iterations')
print(model.mean_)
plt.scatter(X[:,0], X[:,1], s=10, c=model.predict(X))
plt.scatter(model.mean_[:,0], model.mean_[:,1], s=100, c='k')
plt.axis('equal')
plt.show();
and output
11 iterations
[[9.92301067 4.62282807]
[0.09413883 0.03527411]]
You can see that the estimated centers ((9.9, 4.6)
and (0.09, 0.03)
) are close to the true centers ((10, 5)
and (0, 0)
).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With