Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Finding Unique Users When Changing Info

Tags:

r

igraph

I have the following data:

dat <- data.frame(user_id = c(101,102,102,103,103,106),
           phone_number = c(4030201, 4030201, 4030202, 4030202, 4030203, 4030204))

I want to calculate the unique users. As you can see, here we have 2 unique users. So, ultimately the table I want to create is the following:

user_id    phone_number    new_user_id 
    101         4030201              1
    102         4030201              1  
    102         4030202              1
    103         4030202              1
    103         4030203              1
    106         4030204              2

Any ideas on how could I calculate this in R? Or in a different language and then I can translate the code to R.

like image 623
James Harrington Avatar asked Dec 31 '22 14:12

James Harrington


2 Answers

Updated02 (Some minor tweaks needed to be made) I had to ask two questions to be able to solve it. If you are dealing with this kind of questions a lot, you are required to learn igraph package which is primarily used for network analysis. There maybe a more simple way of doing it but for now I think it will do. Let's walk you through it:

library(dplyr)
library(purrr)

# In the firs chunk we iterate over every row of your data set to find out
# whether there is a connection between the corresponding rows and the others

map(1:nrow(dat), function(x) {
  dat %>%
    mutate(id = row_number()) %>%
    pmap_lgl(., ~ {x <- unlist(dat[x,]); 
    any(x %in% c(...))})
}) %>%
  exec(cbind, !!!.) %>%
  as.data.frame() -> dat2

dat2 %>%
  pmap(~ sub("V", "", names(dat2))[c(...)] %>% as.numeric()) -> ids

[[1]]
[1] 1 2

[[2]]
[1] 1 2 3

[[3]]
[1] 2 3 4

[[4]]
[1] 3 4 5

[[5]]
[1] 4 5 8

[[6]]
[1] 6

[[7]]
[1] 7

[[8]]
[1] 5 8

Then we group all the related ids together. For this part I used solutions proposed by my dear friends @det & @Ian Campbell cause I don't know how to use igraph.

library(igraph)

map(ids, function(a) map_int(ids, ~length(base::intersect(a, .x)) > 0) * 1L) %>% 
  reduce(rbind) %>%
  graph.adjacency() %>%
  as.undirected() %>%
  components() %>%
  pluck("membership") %>%
  split(seq_along(.), .) %>%
  map(~unique(unlist(ids[.x]))) -> grouped_ids

$`1`
[1] 1 2 3 4 5 8

$`2`
[1] 6

$`3`
[1] 7

After we grouped all the related once together, we can then group our data set:

dat %>%
  mutate(id = row_number()) %>%
  rowwise() %>%
  mutate(grp = seq(length(grouped_ids))[map_lgl(grouped_ids, ~ id %in% .x)])

  user_id phone_number id grp
1     101      4030201  1   1
2     102      4030201  2   1
3     102      4030202  3   1
4     103      4030202  4   1
5     103      4030203  5   1
6     106      4030204  6   2
7     107      4030205  7   3
8     111      4030203  8   1

Data

structure(list(user_id = c(101, 102, 102, 103, 103, 106, 107, 
111), phone_number = c(4030201, 4030201, 4030202, 4030202, 4030203, 
4030204, 4030205, 4030203)), class = "data.frame", row.names = c(NA, 
-8L))
like image 140
Anoushiravan R Avatar answered Jan 14 '23 21:01

Anoushiravan R


Simplifying my friend's answer a bit

dat <- data.frame(user_id = c(101,102,102,103,103,106),
                  phone_number = c(4030201, 4030201, 4030202, 4030202, 4030203, 4030204))

library(tidyverse)
library(igraph)

graph.data.frame(dat) %>%
  components() %>%
  pluck(membership) %>%
  stack() %>%
  set_names(c('GRP', 'user_id')) %>%
  right_join(dat %>% mutate(user_id = as.factor(user_id)), by = c('user_id'))

  GRP user_id phone_number
1   1     101      4030201
2   1     102      4030201
3   1     102      4030202
4   1     103      4030202
5   1     103      4030203
6   2     106      4030204

on dat given in comments, it gives

  GRP user_id phone_number
1   1     101      4030201
2   1     102      4030201
3   1     102      4030202
4   1     103      4030202
5   1     103      4030203
6   2     106      4030204
7   3     107      4030205
8   1     111      4030203
like image 31
AnilGoyal Avatar answered Jan 14 '23 20:01

AnilGoyal