I have a program that sums the common elements of two arrays. For that I used two for loops and if I have three then I could use three for loops. But how to sum the common elements of n number of arrays where n is coming during run time.
I don't know how to change the number of loops during run time or is there any other relevant concept for this ?
Here is the code I've tried for summing twoarrays:
import java.util.Scanner;
public class Sample {
public static void main(String... args)
{
Scanner sc=new Scanner(System.in);
int arr1[]={1,2,3,4,5},arr2[]={4,5,6,7,8},sum=0;
for (int i=0;i<arr1.length;i++)
{
for (int j=0;j<arr2.length;j++)
{
if (arr1[i]==arr2[j])
{
sum+=(arr1[i]);
}
}
}
}
}
By using the retainAll() method of the HashSet we can find the common elements between two arrays.
You cannot use the plus operator to add two arrays in Java e.g. if you have two int arrays a1 and a2, doing a3 = a1 + a2 will give a compile-time error. The only way to add two arrays in Java is to iterate over them and add individual elements and store them into a new array.
There can be different implementation for that. You can use the following approach. Here is the pseudo code
input[n][m]
ArrayList
commonItems
to store the common items of. Initiate it with the elements of input[0]
i = 1 to n-1
. compare with every input[i]
, store only the common items of commonItems
and input[i]
at each step. You can do it by converting the input[i]
into a list and by using retainAll
method. commonItem
list will contains the common numbers only. Now sum the value of this list.There is actually a more general method, that also answers the question "how to change the number of loops during run time?".
We are looking for a way to implement something equivalent to this:
for (i1 = 0; i1 < k1; i1++) {
for (i2 = 0; i2 < k2; i2++) {
for (i3 = 0; i3 < k3; i3++) {
...
for (in = 0; in < kn; in++) {
f(x1[i1], x2[i2], ... xn[in]);
}
...
}
}
}
where, n
is given at runtime and f
is a function taking a list of n
parameters, processing the current n-tuple.
There is a general solution, based on the concept of recursion.
This is one implementation that produces the desired behavior:
void process(int idx, int n, int[][] x, int[] k, Object[] ntuple) {
if (idx == n) {
// we have a complete n-tuple,
// with an element from each of the n arrays
f(ntuple);
return;
}
// this is the idx'th "for" statement
for (int i = 0; i < k[idx]; i++) {
ntuple[idx] = x[idx][i];
// with this recursive call we make sure that
// we also generate the rest of the for's
process(idx + 1, n, x, k, ntuple);
}
}
The function assumes that the n
arrays are stored in a matrix x
, and the first call should look like this:
process(0, n, x, k, new Object[n]);
The solution above has a high complexity (it is O(k1⋅k2⋅..⋅kn)), but sometimes it is possible to avoid going until the deepest loop.
Indeed, in the specific problem mentioned in this post (which requires summing common elements across all arrays), we can skip generating some tuples e.g. if already x2[i2] ≠ x1[i1].
In the recursive solution, those situations can easily be pruned. The specific code for this problem would probably look like this:
void process(int idx, int n, int[][] x, int[] k, int value) {
if (idx == n) {
// all elements from the current tuple are equal to "value".
// add this to the global "sum" variable
sum += value;
return;
}
for (int i = 0; i < k[idx]; i++) {
if (idx == 0) {
// this is the outer "for", set the new value
value = x[0][i];
} else {
// check if the current element from the idx'th for
// has the same value as all previous elements
if (x[idx][i] == value) {
process(idx + 1, n, x, k, value);
}
}
}
}
Assuming that the index of the element is not important: a[1] = 2 and a[5] = 2, you only need two nested loops.
First you need to put n-1 arrays in a list of sets. Then loop over nth array and check if each element exists in all of the sets in the list. If it does exist then add to total.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With