I want to find the starts and stops indexes of blocks of identical values in a numpy array or preferably a pandas DataFrame (blocks along the column for a 2D array, and along the most quickly varying index for a n - dimensional array). I only look for blocks on a single dimension and don't want to agregate nans on different rows.
Starting from that question (Find large number of consecutive values fulfilling condition in a numpy array), I wrote the following solution finding np.nan for a 2D array :
import numpy as np
a = np.array([
[1, np.nan, np.nan, 2],
[np.nan, 1, np.nan, 3],
[np.nan, np.nan, np.nan, np.nan]
])
nan_mask = np.isnan(a)
start_nans_mask = np.hstack((np.resize(nan_mask[:,0],(a.shape[0],1)),
np.logical_and(np.logical_not(nan_mask[:,:-1]), nan_mask[:,1:])
))
stop_nans_mask = np.hstack((np.logical_and(nan_mask[:,:-1], np.logical_not(nan_mask[:,1:])),
np.resize(nan_mask[:,-1], (a.shape[0],1))
))
start_row_idx,start_col_idx = np.where(start_nans_mask)
stop_row_idx,stop_col_idx = np.where(stop_nans_mask)
This lets me for example analyze the distribution of length of patches of missing values before applying pd.fillna.
stop_col_idx - start_col_idx + 1
array([2, 1, 1, 4], dtype=int64)
One more example and the expecting result :
a = np.array([
[1, np.nan, np.nan, 2],
[np.nan, 1, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan]
])
array([2, 1, 2, 4], dtype=int64)
and not
array([2, 1, 6], dtype=int64)
My questions are the following :
I loaded your np.array into a dataframe:
In [26]: df
Out[26]:
0 1 2 3
0 1 NaN NaN 2
1 NaN 1 NaN 2
2 NaN NaN NaN NaN
Then transposed and turned it into a series. I think this is similar to np.hstack
:
In [28]: s = df.T.unstack(); s
Out[28]:
0 0 1
1 NaN
2 NaN
3 2
1 0 NaN
1 1
2 NaN
3 2
2 0 NaN
1 NaN
2 NaN
3 NaN
This expression creates a Series where the numbers represent blocks incrementing by 1 for every non-null value:
In [29]: s.notnull().astype(int).cumsum()
Out[29]:
0 0 1
1 1
2 1
3 2
1 0 2
1 3
2 3
3 4
2 0 4
1 4
2 4
3 4
This expression creates a Series where every nan is a 1 and everything else is a zero:
In [31]: s.isnull().astype(int)
Out[31]:
0 0 0
1 1
2 1
3 0
1 0 1
1 0
2 1
3 0
2 0 1
1 1
2 1
3 1
We can combine the two in the following manner to achieve the counts you need:
In [32]: s.isnull().astype(int).groupby(s.notnull().astype(int).cumsum()).sum()
Out[32]:
1 2
2 1
3 1
4 4
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With