I'm trying to look for shapes in an image using OpenCV. I know the shapes I want to match (there are some shapes I don't know about, but I don't need to find them) and their orientations. I don't know their sizes (scale) and locations.
My current approach:
Where this approach comes undone is where shapes touch. The contour detection picks up the two adjacent shapes as a single contour (single bounding box). The matching step will then obviously fail.
Is there a way to modify my approach to handle adjacent shapes separately? Also, is there a better way to perform step 3?
For example: (Es colored green, Ys colored blue)
Failed case: (unknown shape in red)
Source code:
import cv
import sys
E = cv.LoadImage('e.png')
E_ratio = float(E.width)/E.height
Y = cv.LoadImage('y.png')
Y_ratio = float(Y.width)/Y.height
EPSILON = 0.1
im = cv.LoadImage(sys.argv[1], cv.CV_LOAD_IMAGE_GRAYSCALE)
storage = cv.CreateMemStorage(0)
seq = cv.FindContours(im, storage, cv.CV_RETR_EXTERNAL,
cv.CV_CHAIN_APPROX_SIMPLE)
regions = []
while seq:
pts = [ pt for pt in seq ]
x, y = zip(*pts)
min_x, min_y = min(x), min(y)
width, height = max(x) - min_x + 1, max(y) - min_y + 1
regions.append((min_x, min_y, width, height))
seq = seq.h_next()
rgb = cv.LoadImage(sys.argv[1], cv.CV_LOAD_IMAGE_COLOR)
for x,y,width,height in regions:
pt1 = x,y
pt2 = x+width,y+height
if abs(float(width)/height - E_ratio) < EPSILON:
color = (0,255,0,0)
elif abs(float(width)/height - Y_ratio) < EPSILON:
color = (255,0,0,0)
else:
color = (0,0,255,0)
cv.Rectangle(rgb, pt1, pt2, color, 2)
cv.ShowImage('rgb', rgb)
cv.WaitKey(0)
e.png:
y.png:
good:
bad:
Before anybody asks, no, I'm not trying to break a captcha :) OCR per se isn't really relevant here: the actual shapes in my real project aren't characters -- I'm just lazy, and characters are the easiest thing to draw (and still get detected by trivial methods).
We can find shapes present in an image using the findContours() and approxPolyDP() function of OpenCV. We can detect shapes depending on the number of corners it has. For example, a triangle has 3 corners, a square has 4 corners, and a pentagon has 5 corners.
OpenCV is an open source library used mainly for processing images and videos to identify shapes, objects, text etc. It is mostly used with python.
Contours – convex contours and the Douglas-Peucker algorithm The first facility OpenCV offers to calculate the approximate bounding polygon of a shape is cv2. approxPolyDP.
Use the findContours() and contourArea() Function of OpenCV to Detect Rectangles in Images in Python. We can detect a rectangle present in an image using the findContours() function of OpenCV, and we can use the contourArea() function to sort different rectangles according to their area.
As your shapes can vary in size and ratio, you should look at scaling invariant descriptors. A bunch of such descriptors would be perfect for your application.
Process those descriptors on your test template and then use some kind of simple classification to extract them. It should give pretty good results with simple shapes as you show.
I used Zernike and Hu moments in the past, the latter being the most famous. You can find an example of implementation here : http://www.lengrand.fr/2011/11/classification-hu-and-zernike-moments-matlab/.
Another thing : Given your problem, you should look at OCR technologies (stands for optical character recognition : http://en.wikipedia.org/wiki/Optical_character_recognition ;)).
Hope this helps a bit.
Julien
Have you try Chamfer Matching or contour matching (correspondence) using CCH as descriptor.
Chamfer matching is using distance transform of target image and template contour. not exactly scale invariant but fast.
The latter is rather slow, as the complexity is at least quadratic for bipartite matching problem. on the other hand, this method is invariant to scale, rotation, and probably local distortion (for approximate matching, which IMHO is good for the bad example above).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With