I'm attempting to use OpenCV to identify and extract a fairly obvious region from an image. So far, by using a threshold and a series of dilations and erosions, I can successfully find the contour for the area I require.
However, my attempts to use minAreaRect
as a precursor to rotation and cropping are failing to generate a rectangle that contains the input contour.
contours, hierarchy = cv2.findContours(morph.copy() ,cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour = contours[0]
draw = cv2.cvtColor(morph, cv2.COLOR_GRAY2BGR)
cv2.drawContours(draw, [contour], 0, (0,255,0), 2)
rotrect = cv2.minAreaRect(contour)
box = cv2.cv.BoxPoints(rotrect)
box = numpy.int0(box)
cv2.drawContours(draw, [box], 0, (0,0,255), 2)
cv2.imshow('image', draw); cv2.waitKey(0)
Here's and example of the output:
Where the red stroke is the rect
and the green is the contour
. I would have expected the red stroke to encompass the green stroke.
Unfortunately I'm unable to provide the input image.
I ended up solving this by implementing my own rotating callipers procedure to find the minimum rectangle. It uses the convex hull to determine candidate rotations.
def p2abs(point):
return math.sqrt(point[0] ** 2 + point[1] ** 2)
def rotatePoint(point, angle):
s, c = math.sin(angle), math.cos(angle)
return (p[0] * c - p[1] * s, p[0] * s + p[1] * c)
def rotatePoints(points, angle):
return [rotatePoint(point, angle) for point in points]
points = map(lambda x: tuple(x[0]), contour)
convexHull = map(lambda x: points[x], scipy.spatial.ConvexHull(numpy.array(points)).vertices)
minArea = float("inf")
minRect = None
for i in range(len(hull)):
a, b = convexHull[i], convexHull[i - 1]
ang = math.atan2(b[0] - a[0], b[1] - a[1])
rotatedHull = rotatePoints(convexHull, ang)
minX = min(map(lambda p: p[0], rotatedHull))
maxX = max(map(lambda p: p[0], rotatedHull))
minY = min(map(lambda p: p[1], rotatedHull))
maxY = max(map(lambda p: p[1], rotatedHull))
area = (maxX - minX) * (maxY - minY)
if area < minArea:
minArea = area
rotatedRect = [(minX, minY), (minX, maxY), (maxX, maxY), (maxX, minY)]
minRect = rotatePoints(rotatedRect, -ang)
_, topLeft = min([(p2abs(p), i) for p, i in zip(range(4), minRect)])
rect = minrect[topLeft:] + minrect[:topLeft]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With