I am trying to find the hour of max demand every day in my demand time series.
I have created a dataframe that looks like..
power
2011-01-01 00:00:00 1015.70
2011-01-01 01:00:00 1015.70
2011-01-01 02:00:00 1010.30
2011-01-01 03:00:00 1010.90
2011-01-01 04:00:00 1021.10
2011-01-01 05:00:00 1046.00
2011-01-01 06:00:00 1054.60
...
and a grouped series to find the max value from each day using .max()
grouped = df.groupby(pd.TimeGrouper('D'))
grouped['power'].max()
OUTPUT
2011-01-01 1367.30
2011-01-02 1381.90
2011-01-03 1289.00
2011-01-04 1323.50
2011-01-05 1372.70
2011-01-06 1314.40
2011-01-07 1310.60
...
However I need the hour of the max value also. So something like:
2011-01-01 18 1367.30
2011-01-02 5 1381.90
2011-01-03 22 1289.00
2011-01-04 10 1323.50
...
I have tried using idxmax() but I keep getting a ValueError
UPDATE from 2018-09-19:
FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
solution:
In [295]: df.loc[df.groupby(pd.Grouper(freq='D')).idxmax().iloc[:, 0]]
Out[295]:
power
2011-01-01 06:00:00 1054.6
2011-01-02 06:00:00 2054.6
Old answer:
try this:
In [376]: df.loc[df.groupby(pd.TimeGrouper('D')).idxmax().iloc[:, 0]]
Out[376]:
power
2011-01-01 06:00:00 1054.6
2011-01-02 06:00:00 2054.6
data:
In [377]: df
Out[377]:
power
2011-01-01 00:00:00 1015.7
2011-01-01 01:00:00 1015.7
2011-01-01 02:00:00 1010.3
2011-01-01 03:00:00 1010.9
2011-01-01 04:00:00 1021.1
2011-01-01 05:00:00 1046.0
2011-01-01 06:00:00 1054.6
2011-01-02 00:00:00 2015.7
2011-01-02 01:00:00 2015.7
2011-01-02 02:00:00 2010.3
2011-01-02 03:00:00 2010.9
2011-01-02 04:00:00 2021.1
2011-01-02 05:00:00 2046.0
2011-01-02 06:00:00 2054.6
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With