The situation is as follows:
I have a 2D numpy array. Its shape is (1002, 1004). Each element contains a value between 0 and Inf. What I now want to do is determine the first 1000 maximum values and store the corresponding indices in to a list named x and a list named y. This is because I want to plot the maximum values and the indices actually correspond to real time x and y position of the value.
What I have so far is:
x = numpy.zeros(500)
y = numpy.zeros(500)
for idx in range(500):
x[idx] = numpy.unravel_index(full.argmax(), full.shape)[0]
y[idx] = numpy.unravel_index(full.argmax(), full.shape)[1]
full[full == full.max()] = 0.
print os.times()
Here full is my 2D numpy array. As can be seen from the for loop, I only determine the first 500 maximum values at the moment. This however already takes about 5 s. For the first 1000 maximum values, the user time should actually be around 0.5 s. I've noticed that a very time consuming part is setting the previous maximum value to 0 each time. How can I speed things up?
Thank you so much!
If you have numpy 1.8, you can use the argpartition
function or method.
Here's a script that calculates x
and y
:
import numpy as np
# Create an array to work with.
np.random.seed(123)
full = np.random.randint(1, 99, size=(8, 8))
# Get the indices for the largest `num_largest` values.
num_largest = 8
indices = (-full).argpartition(num_largest, axis=None)[:num_largest]
# OR, if you want to avoid the temporary array created by `-full`:
# indices = full.argpartition(full.size - num_largest, axis=None)[-num_largest:]
x, y = np.unravel_index(indices, full.shape)
print("full:")
print(full)
print("x =", x)
print("y =", y)
print("Largest values:", full[x, y])
print("Compare to: ", np.sort(full, axis=None)[-num_largest:])
Output:
full:
[[67 93 18 84 58 87 98 97]
[48 74 33 47 97 26 84 79]
[37 97 81 69 50 56 68 3]
[85 40 67 85 48 62 49 8]
[93 53 98 86 95 28 35 98]
[77 41 4 70 65 76 35 59]
[11 23 78 19 16 28 31 53]
[71 27 81 7 15 76 55 72]]
x = [0 2 4 4 0 1 4 0]
y = [6 1 7 2 7 4 4 1]
Largest values: [98 97 98 98 97 97 95 93]
Compare to: [93 95 97 97 97 98 98 98]
You could loop through the array as @Inspired suggests, but looping through NumPy arrays item-by-item tends to lead to slower-performing code than code which uses NumPy functions since the NumPy functions are written in C/Fortran, while the item-by-item loop tends to use Python functions.
So, although sorting is O(n log n)
, it may be quicker than a Python-based one-pass O(n)
solution. Below np.unique
performs the sort:
import numpy as np
def nlargest_indices(arr, n):
uniques = np.unique(arr)
threshold = uniques[-n]
return np.where(arr >= threshold)
full = np.random.random((1002,1004))
x, y = nlargest_indices(full, 10)
print(full[x, y])
print(x)
# [ 2 7 217 267 299 683 775 825 853]
print(y)
# [645 621 132 242 556 439 621 884 367]
Here is a timeit benchmark comparing nlargest_indices
(above) to
def nlargest_indices_orig(full, n):
full = full.copy()
x = np.zeros(n)
y = np.zeros(n)
for idx in range(n):
x[idx] = np.unravel_index(full.argmax(), full.shape)[0]
y[idx] = np.unravel_index(full.argmax(), full.shape)[1]
full[full == full.max()] = 0.
return x, y
In [97]: %timeit nlargest_indices_orig(full, 500)
1 loops, best of 3: 5 s per loop
In [98]: %timeit nlargest_indices(full, 500)
10 loops, best of 3: 133 ms per loop
For timeit purposes I needed to copy the array inside nlargest_indices_orig
, lest full
get mutated by the timing loop.
Benchmarking the copying operation:
def base(full, n):
full = full.copy()
In [102]: %timeit base(full, 500)
100 loops, best of 3: 4.11 ms per loop
shows this added about 4ms to the 5s benchmark for nlargest_indices_orig
.
Warning: nlargest_indices
and nlargest_indices_orig
may return different results if arr
contains repeated values.
nlargest_indices
finds the n
largest values in arr
and then returns the x
and y
indices corresponding to the locations of those values.
nlargest_indices_orig
finds the n
largest values in arr
and then returns one x
and y
index for each large value. If there is more than one x
and y
corresponding to the same large value, then some locations where large values occur may be missed.
They also return indices in a different order, but I suppose that does not matter for your purpose of plotting.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With