I have a 3D-array consisting of several numbers within each band. Is there a function that returns the index positions where the array meets MULTIPLE conditions?
I tried the following:
index_pos = numpy.where(
array[:,:,0]==10 and array[:,:,1]==15 and array[:,:,2]==30)
It returns the error:
ValueError: The truth value of an array with more than one element is ambiguous.
Use a.any() or a.all()
You actually have a special case where it would be simpler and more efficient to do the following:
Create the data:
>>> arr
array([[[ 6, 9, 4],
[ 5, 2, 1],
[10, 15, 30]],
[[ 9, 0, 1],
[ 4, 6, 4],
[ 8, 3, 9]],
[[ 6, 7, 4],
[ 0, 1, 6],
[ 4, 0, 1]]])
The expected value:
>>> index_pos = np.where((arr[:,:,0]==10) & (arr[:,:,1]==15) & (arr[:,:,2]==30))
>>> index_pos
(array([0]), array([2]))
Use broadcasting to do this simultaneously:
>>> arr == np.array([10,15,30])
array([[[False, False, False],
[False, False, False],
[ True, True, True]],
[[False, False, False],
[False, False, False],
[False, False, False]],
[[False, False, False],
[False, False, False],
[False, False, False]]], dtype=bool)
>>> np.where( np.all(arr == np.array([10,15,30]), axis=-1) )
(array([0]), array([2]))
If the indices you want are not contiguous you can do something like this:
ind_vals = np.array([0,2])
where_mask = (arr[:,:,ind_vals] == values)
Broadcast when you can.
Spurred by @Jamie's comment, some interesting things to consider:
arr = np.random.randint(0,100,(5000,5000,3))
%timeit np.all(arr == np.array([10,15,30]), axis=-1)
1 loops, best of 3: 614 ms per loop
%timeit ((arr[:,:,0]==10) & (arr[:,:,1]==15) & (arr[:,:,2]==30))
1 loops, best of 3: 217 ms per loop
%timeit tmp = (arr == np.array([10,15,30])); (tmp[:,:,0] & tmp[:,:,1] & tmp[:,:,2])
1 loops, best of 3: 368 ms per loop
The question becomes, why is this?:
First off examine:
%timeit (arr[:,:,0]==10)
10 loops, best of 3: 51.2 ms per loop
%timeit (arr == np.array([10,15,30]))
1 loops, best of 3: 300 ms per loop
One would expect that arr == np.array([10,15,30])
would be at worse case 1/3 the speed of arr[:,:,0]==10
. Anyone have an idea why this is not the case?
Then when combining the final axis there are many ways to accomplish this.
tmp = (arr == np.array([10,15,30]))
method1 = np.all(tmp,axis=-1)
method2 = (tmp[:,:,0] & tmp[:,:,1] & tmp[:,:,2])
method3 = np.einsum('ij,ij,ij->ij',tmp[:,:,0] , tmp[:,:,1] , tmp[:,:,2])
np.allclose(method1,method2)
True
np.allclose(method1,method3)
True
%timeit np.all(tmp,axis=-1)
1 loops, best of 3: 318 ms per loop
%timeit (tmp[:,:,0] & tmp[:,:,1] & tmp[:,:,2])
10 loops, best of 3: 68.2 ms per loop
%timeit np.einsum('ij,ij,ij->ij',tmp[:,:,0] , tmp[:,:,1] , tmp[:,:,2])
10 loops, best of 3: 38 ms per loop
The einsum speed up is well defined elsewhere, but it seems odd to me that there is such a difference between all
and consecutive &
's.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With