I am debugging below problem and post the solution I am debugging and working on, the solution or similar is posted on a couple of forums, but I think the solution has a bug when num[0] = 0 or in general num[x] = x? Am I correct? Please feel free to correct me if I am wrong.
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note: You must not modify the array (assume the array is read only). You must use only constant, O(1) extra space. Your runtime complexity should be less than O(n2). There is only one duplicate number in the array, but it could be repeated more than once.
int findDuplicate3(vector<int>& nums)
{
if (nums.size() > 1)
{
int slow = nums[0];
int fast = nums[nums[0]];
while (slow != fast)
{
slow = nums[slow];
fast = nums[nums[fast]];
}
fast = 0;
while (fast != slow)
{
fast = nums[fast];
slow = nums[slow];
}
return slow;
}
return -1;
}
Find the Duplicate Number - LeetCode. Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive. There is only one repeated number in nums , return this repeated number. You must solve the problem without modifying the array nums and uses only constant extra space.
One more way to detect duplication in the java array is adding every element of the array into HashSet which is a Set implementation. Since the add(Object obj) method of Set returns false if Set already contains an element to be added, it can be used to find out if the array contains duplicates in Java or not.
Using the indexOf() method In this method, what we do is that we compare the index of all the items of an array with the index of the first time that number occurs. If they don't match, that implies that the element is a duplicate. All such elements are returned in a separate array using the filter() method.
Below is my code which uses Floyd's cycle-finding algorithm:
#include <iostream>
#include <vector>
using namespace std;
int findDup(vector<int>&arr){
int len = arr.size();
if(len>1){
int slow = arr[0];
int fast = arr[arr[0]];
while(slow!=fast){
slow = arr[slow];
fast = arr[arr[fast]];
}
fast = 0;
while(slow!=fast){
slow = arr[slow];
fast = arr[fast];
}
return slow;
}
return -1;
}
int main() {
vector<int>v = {1,2,2,3,4};
cout<<findDup(v)<<endl;
return 0;
}
Comment This works because zeroes aren't allowed, so the first element of the array isn't part of a cycle, and so the first element of the first cycle we find is referred to both outside and inside the cycle. If zeroes were allowed, this would fail if arr[0] were on a cycle. E.g., [0,1,1].
The sum of integers from 1 to N = (N * (N + 1)) / 2
. You can use this to find the duplicate -- sum the integers in the array, then subtract the above formula from the sum. That's the duplicate.
Update: The above solution is based on the (possibly invalid) assumption that the input array consists of the values from 1 to N plus a single duplicate.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With