I'm trying to create a data structure that holds all the possible substring combinations that add up to the original string. For example, if the string is "java"
the valid results would be "j", "ava"
, "ja", "v", "a"
, an invalid result would be "ja", "a"
or "a", "jav"
I had it very easy in finding all the possible substrings
String string = "java";
List<String> substrings = new ArrayList<>();
for( int c = 0 ; c < string.length() ; c++ )
{
for( int i = 1 ; i <= string.length() - c ; i++ )
{
String sub = string.substring(c, c+i);
substrings.add(sub);
}
}
System.out.println(substrings);
and now I'm trying to construct a structure that holds only the valid substrings. But its not nearly as easy. I'm in the mist of a very ugly code, fiddling around with the indexes, and no where near of finishing, most likely on a wrong path completely. Any hints?
Here's one approach:
static List<List<String>> substrings(String input) {
// Base case: There's only one way to split up a single character
// string, and that is ["x"] where x is the character.
if (input.length() == 1)
return Collections.singletonList(Collections.singletonList(input));
// To hold the result
List<List<String>> result = new ArrayList<>();
// Recurse (since you tagged the question with recursion ;)
for (List<String> subresult : substrings(input.substring(1))) {
// Case: Don't split
List<String> l2 = new ArrayList<>(subresult);
l2.set(0, input.charAt(0) + l2.get(0));
result.add(l2);
// Case: Split
List<String> l = new ArrayList<>(subresult);
l.add(0, input.substring(0, 1));
result.add(l);
}
return result;
}
Output:
[java]
[j, ava]
[ja, va]
[j, a, va]
[jav, a]
[j, av, a]
[ja, v, a]
[j, a, v, a]
It seems like this is the problem of finding the compositions of the length of the string, and using those compositions to make substrings. So there are 2^n-1 compositions of a number n, which could make it a bit time-consuming for long strings...
Probably somebody would like another solution which is non-recursive and takes no memory to hold a list:
public static List<List<String>> substrings(final String input) {
if(input.isEmpty())
return Collections.emptyList();
final int size = 1 << (input.length()-1);
return new AbstractList<List<String>>() {
@Override
public List<String> get(int index) {
List<String> entry = new ArrayList<>();
int last = 0;
while(true) {
int next = Integer.numberOfTrailingZeros(index >> last)+last+1;
if(next == last+33)
break;
entry.add(input.substring(last, next));
last = next;
}
entry.add(input.substring(last));
return entry;
}
@Override
public int size() {
return size;
}
};
}
public static void main(String[] args) {
System.out.println(substrings("java"));
}
Output:
[[java], [j, ava], [ja, va], [j, a, va], [jav, a], [j, av, a], [ja, v, a], [j, a, v, a]]
It just calculates the next combination based on its index.
Just in case someone will look for the same algorithm in python, here is implementation in Python:
from itertools import combinations
def compositions(s):
n = len(s)
for k in range(n):
for c in combinations(range(1, n), k):
yield tuple(s[i:j] for i, j in zip((0,) + c, c + (n,)))
Example how it works:
>>> for x in compositions('abcd'):
... print(x)
('abcd',)
('a', 'bcd')
('ab', 'cd')
('abc', 'd')
('a', 'b', 'cd')
('a', 'bc', 'd')
('ab', 'c', 'd')
('a', 'b', 'c', 'd')
With a small modification you can generate compositions in different order:
def compositions(s):
n = len(s)
for k in range(n):
for c in itertools.combinations(range(n - 1, 0, -1), k):
yield tuple(s[i:j] for i, j in zip((0,) + c[::-1], c[::-1] + (n,)))
It will give you this:
>>> for x in compositions('abcd'):
... print(x)
('abcd',)
('abc', 'd')
('ab', 'cd')
('a', 'bcd')
('ab', 'c', 'd')
('a', 'bc', 'd')
('a', 'b', 'cd')
('a', 'b', 'c', 'd')
And with another small addition, you can generate only specified number of splits:
def compositions(s, r=None):
n = len(s)
r = range(n) if r is None else [r - 1]
for k in r:
for c in itertools.combinations(range(n - 1, 0, -1), k):
yield tuple(s[i:j] for i, j in zip((0,) + c[::-1], c[::-1] + (n,)))
>>> for x in compositions('abcd', 3):
... print(x)
('ab', 'c', 'd')
('a', 'bc', 'd')
('a', 'b', 'cd')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With