We need to find pair of numbers in an array whose sum is equal to a given value.
A = {6,4,5,7,9,1,2}
Sum = 10 Then the pairs are - {6,4} , {9,1}
I have two solutions for this .
sum-hash[i]
exists in the hash table or not.But , the problem is that although the second solution is O(n) time , but uses O(n) space as well.
So , I was wondering if we could do it in O(n) time and O(1) space. And this is NOT homework!
While traversing each elements of array, add element of both the array and carry from the previous sum. Now store the unit digit of the sum and forward carry for the next index sum. While adding 0th index element if the carry left, then append it to beginning of the number.
First we initialize the sum to first element of the inputArray. Starting from the second element, we go on adding each element of inputArray to sum one by one. If the sum exceeds the inputNumber then we remove starting elements from the sum until sum becomes either smaller than the inputNumber or equal to inputNumber.
Use in-place radix sort and OP's first solution with 2 iterators, coming towards each other.
If numbers in the array are not some sort of multi-precision numbers and are, for example, 32-bit integers, you can sort them in 2*32 passes using practically no additional space (1 bit per pass). Or 2*8 passes and 16 integer counters (4 bits per pass).
Details for the 2 iterators solution:
First iterator initially points to first element of the sorted array and advances forward. Second iterator initially points to last element of the array and advances backward.
If sum of elements, referenced by iterators, is less than the required value, advance first iterator. If it is greater than the required value, advance second iterator. If it is equal to the required value, success.
Only one pass is needed, so time complexity is O(n). Space complexity is O(1). If radix sort is used, complexities of the whole algorithm are the same.
If you are interested in related problems (with sum of more than 2 numbers), see "Sum-subset with a fixed subset size" and "Finding three elements in an array whose sum is closest to an given number".
This is a classic interview question from Microsoft research Asia.
How to Find 2 numbers in an unsorted array equal to a given sum.
[1]brute force solution
This algorithm is very simple. The time complexity is O(N^2)
[2]Using binary search
Using bianry searching to find the Sum-arr[i] with every arr[i], The time complexity can be reduced to O(N*logN)
[3]Using Hash
Base on [2] algorithm and use hash, the time complexity can be reduced to O(N), but this solution will add the O(N) space of hash.
[4]Optimal algorithm:
Pseduo-code:
for(i=0;j=n-1;i<j)
if(arr[i]+arr[j]==sum) return (i,j);
else if(arr[i]+arr[j]<sum) i++;
else j--;
return(-1,-1);
or
If a[M] + a[m] > I then M--
If a[M] + a[m] < I then m++
If a[M] + a[m] == I you have found it
If m > M, no such numbers exist.
And, Is this quesiton completely solved? No. If the number is N. This problem will become very complex.
The quesiton then:
How can I find all the combination cases with a given number?
This is a classic NP-Complete problem which is called subset-sum.
To understand NP/NPC/NP-Hard you'd better to read some professional books.
References:
[1]http://www.quora.com/Mathematics/How-can-I-find-all-the-combination-cases-with-a-given-number
[2]http://en.wikipedia.org/wiki/Subset_sum_problem
for (int i=0; i < array.size(); i++){
int value = array[i];
int diff = sum - value;
if (! hashSet.contains(diffvalue)){
hashSet.put(value,value);
} else{
printf(sum = diffvalue + hashSet.get(diffvalue));
}
}
--------
Sum being sum of 2 numbers.
public void printPairsOfNumbers(int[] a, int sum){
//O(n2)
for (int i = 0; i < a.length; i++) {
for (int j = i+1; j < a.length; j++) {
if(sum - a[i] == a[j]){
//match..
System.out.println(a[i]+","+a[j]);
}
}
}
//O(n) time and O(n) space
Set<Integer> cache = new HashSet<Integer>();
cache.add(a[0]);
for (int i = 1; i < a.length; i++) {
if(cache.contains(sum - a[i])){
//match//
System.out.println(a[i]+","+(sum-a[i]));
}else{
cache.add(a[i]);
}
}
}
Create a dictionary with pairs Key (number from the list) and the Value is the number which is necessary to obtain a desired value. Next, check the presence of the pairs of numbers in the list.
def check_sum_in_list(p_list, p_check_sum):
l_dict = {i: (p_check_sum - i) for i in p_list}
for key, value in l_dict.items():
if key in p_list and value in p_list:
return True
return False
if __name__ == '__main__':
l1 = [1, 3, 7, 12, 72, 2, 8]
l2 = [1, 2, 2, 4, 7, 4, 13, 32]
print(check_sum_in_list(l1, 10))
print(check_sum_in_list(l2, 99))
Output:
True
Flase
version 2
import random
def check_sum_in_list(p_list, p_searched_sum):
print(list(p_list))
l_dict = {i: p_searched_sum - i for i in set(p_list)}
for key, value in l_dict.items():
if key in p_list and value in p_list:
if p_list.index(key) != p_list.index(value):
print(key, value)
return True
return False
if __name__ == '__main__':
l1 = []
for i in range(1, 2000000):
l1.append(random.randrange(1, 1000))
j = 0
i = 9
while i < len(l1):
if check_sum_in_list(l1[j:i], 100):
print('Found')
break
else:
print('Continue searching')
j = i
i = i + 10
Output:
...
[154, 596, 758, 924, 797, 379, 731, 278, 992, 167]
Continue searching
[808, 730, 216, 15, 261, 149, 65, 386, 670, 770]
Continue searching
[961, 632, 39, 888, 61, 18, 166, 167, 474, 108]
39 61
Finded
[Finished in 3.9s]
If you assume that the value M
to which the pairs are suppose to sum is constant and that the entries in the array are positive, then you can do this in one pass (O(n)
time) using M/2
pointers (O(1)
space) as follows. The pointers are labeled P1,P2,...,Pk
where k=floor(M/2)
. Then do something like this
for (int i=0; i<N; ++i) {
int j = array[i];
if (j < M/2) {
if (Pj == 0)
Pj = -(i+1); // found smaller unpaired
else if (Pj > 0)
print(Pj-1,i); // found a pair
Pj = 0;
} else
if (Pj == 0)
Pj = (i+1); // found larger unpaired
else if (Pj < 0)
print(Pj-1,i); // found a pair
Pj = 0;
}
}
You can handle repeated entries (e.g. two 6's) by storing the indices as digits in base N
, for example. For M/2
, you can add the conditional
if (j == M/2) {
if (Pj == 0)
Pj = i+1; // found unpaired middle
else
print(Pj-1,i); // found a pair
Pj = 0;
}
But now you have the problem of putting the pairs together.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With