I have 2 dataframes
df1
Company SKU Sales
Walmart A 100
Total A 200
Walmart B 200
Total B 300
Walmart C 400
Walmart D 500
df2
Company SKU Sales
Walmart A 400
Total B 300
Walmart C 900
Walmart F 400
Total G 500
I want a resulting dataframe (df2) which only has the records of matching SKUs in df1 and df2
df2
Company SKU Sales
Walmart A 400
Total B 300
Walmart C 900
I want only the unique (Company + SKU) values of df1 in df2
Is there any good solution to achieve this?
Update
You could use a simple mask:
m = df2.SKU.isin(df1.SKU)
df2 = df2[m]
You are looking for an inner join. Try this:
df3 = df1.merge(df2, on=['SKU','Sales'], how='inner')
# SKU Sales
#0 A 100
#1 B 200
#2 C 300
Or this:
df3 = df1.merge(df2, on='SKU', how='inner')
# SKU Sales_x Sales_y
#0 A 100 100
#1 B 200 200
#2 C 300 300
One way is to align indices and then use a mask.
# align indices
df1 = df1.set_index(['Company', 'SKU'])
df2 = df2.set_index(['Company', 'SKU'])
# calculate & apply mask
df2 = df2[df2.index.isin(df1.index)].reset_index()
Resetting index is not required, but needed to elevate Company
and SKU
to columns.
Solution 1 :
# First identify the common SKU's
temp = list(set(list(df1.SKU)).intersection(set(list(df2.SKU))))
# Filter df2 using the list of common SKU's
df3 = df2[df2.SKU.isin(temp)]
print(df3)
SKU Sales
0 A 400
1 B 300
2 C 900
Solution 2 : One Line solution
df3 = df2[df2.SKU.isin(list(df1.SKU))]
EDIT 1 : Solution for the updated question (Not the optimal way of doing it, but answers your question)
# reading data for df1
df1= pd.read_clipboard(sep='\\s+')
df1
Company SKU Sales
0 Walmart A 100
1 Total A 200
2 Walmart B 200
3 Total B 300
4 Walmart C 400
5 Walmart D 500
# reading data for df2
df2= pd.read_clipboard(sep='\\s+')
df2
Company SKU Sales
0 Walmart A 400
1 Total B 300
2 Walmart C 900
3 Walmart F 400
4 Total G 500
# Using intersect and zip to create a list of tuples matching in the data frames
temp = list(set(list(zip(df1.Company,df1.SKU))).intersection(set(list(zip(df2.Company,df2.SKU)))))
temp
[('Walmart', 'A'), ('Walmart', 'C'), ('Total', 'B')]
# Creating a helper variable in df2 to lookup in the temp list
df2["temp"] = list(zip(df2.Company,df2.SKU))
df2= df2[df2["temp"].isin(temp)]
del(df2["temp"])
df2
Company SKU Sales
0 Walmart A 400
1 Total B 300
2 Walmart C 900
Suggestions are welcome to improve this code
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With