When creating a DataFrame with MultiIndex columns it seems not possible to select / filter rows using syntax like df[df["AA"]>0.0]
.
For example:
import pandas as pd
import numpy as np
dates = np.asarray(pd.date_range('1/1/2000', periods=8))
_metaInfo = pd.MultiIndex.from_tuples([('AA', '[m]'), ('BB', '[m]'), ('CC', '[s]'), ('DD', '[s]')], names=['parameter','unit'])
df = pd.DataFrame(randn(8, 4), index=dates, columns=_metaInfo)
print df[df['AA']>0.0]
The result of df["AA"]>0.0 is an indexed DataFrame iso a Timeseries. This probably causes the crash.
When using the same metaInfo as an index for the rows, the situation is different:
df1 = pandas.DataFrame(np.random.randn(4, 6), index=_metaInfo)
print df1[df1["AA"]>0.0]
produces:
[ 1.13268106 -0.06887761 0.68535054 2.49431163 -0.29349413 0.34772553]
which are the elements of row AA larger than zero. This gives only the values of row AA and not of the other columns of the DataFrame.
Is there a workaround? Am I trying to do something I shouldn't?
You can select only the 'AA' column and use it as a filter on the entire df.
Like:
df[df[('AA','[m]')]>0.0]
parameter AA BB CC DD
unit [m] [m] [s] [s]
2000-01-01 0.600748 -1.163793 -0.982248 -0.397988
2000-01-03 1.045428 0.365353 0.049152 1.902942
2000-01-06 0.891202 0.021921 1.215515 -1.624741
2000-01-08 0.999217 -1.110213 0.257718 -0.096018
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With