I have the following input data:
df = pd.DataFrame({"ID" : [1, 1, 1, 2, 2, 2, 2],
"length" : [0.7, 0.7, 0.7, 0.8, 0.6, 0.6, 0.7],
"height" : [7, 9, np.nan, 4, 8, np.nan, 5]})
df
ID length height
0 1 0.7 7
1 1 0.7 9
2 1 0.7 np.nan
3 2 0.8 4
4 2 0.6 8
5 2 0.6 np.nan
6 2 0.7 5
I want to be able to fill the NaN if a group of "ID" all have the same "length", fill with the maximum "height" in that group of "ID", else fill with the "height" that correspond to the maximum length in that group.
Required Output:
ID length height
0 1 0.7 7
1 1 0.7 9
2 1 0.7 9
3 2 0.8 4
4 2 0.6 8
5 2 0.6 4
6 2 0.7 5
Thanks.
You could try with sort_value then we use groupby find the last
#last will find the last not NaN value
df.height.fillna(df.sort_values(['length','height']).groupby(['ID'])['height'].transform('last'),inplace=True)
df
Out[296]:
ID length height
0 1 0.7 7.0
1 1 0.7 9.0
2 1 0.7 9.0
3 2 0.8 4.0
4 2 0.6 8.0
5 2 0.6 4.0
6 2 0.7 5.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With