I have a df like this:
df = pd.DataFrame(
[
['A', 1],
['A', 1],
['A', 1],
['B', 2],
['B', 0],
['A', 0],
['A', 1],
['B', 1],
['B', 0]
], columns = ['key', 'val'])
df
print:
key val
0 A 1
1 A 1
2 A 1
3 B 2
4 B 0
5 A 0
6 A 1
7 B 1
8 B 0
I want to fill the rows after 2 in the val column (in the example all values in the val column from row 3 to 8 are replaced with nan).
I tried this:
df['val'] = np.where(df['val'].shift(-1) == 2, np.nan, df['val'])
and iterating over rows like this:
for row in df.iterrows():
df['val'] = np.where(df['val'].shift(-1) == 2, np.nan, df['val'])
but cant get it to fill nan forward.
Using fillna() to fill values from another column Here, we apply the fillna() function on “Col1” of the dataframe df and pass the series df['Col2'] as an argument. The above code fills the missing values in “Col1” with the corresponding values (based on the index) from “Col2”.
You can replace all values or selected values in a column of pandas DataFrame based on condition by using DataFrame. loc[] , np. where() and DataFrame. mask() methods.
You can use boolean indexing
with cummax
to fill nan
values:
df.loc[df['val'].eq(2).cummax(), 'val'] = np.nan
Alternatively you can also use Series.mask
:
df['val'] = df['val'].mask(lambda x: x.eq(2).cummax())
key val
0 A 1.0
1 A 1.0
2 A 1.0
3 B NaN
4 B NaN
5 A NaN
6 A NaN
7 B NaN
8 B NaN
You can try :
ind = df.loc[df['val']==2].index
df.iloc[ind[0]:,1] = np.nan
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With