I'm trying to make my OpenCV-based fiducial marker detection more robust when the user moves the camera (phone) violently. Markers are ArTag-style with a Hamming code embedded within a black border. Borders are detected by thresholding the image, then looking for quads based on the found contours, then checking the internals of the quads.
In general, decoding of the marker is fairly robust if the black border is recognized. I've tried the most obvious thing, which is downsampling the image twice, and also performing quad-detection on those levels. This helps with camera defocus on extreme nearground markers, and also with very small levels of image blur, but doesn't hugely help the general case of camera motion blur
Is there available research on ways to make detection more robust? Ideas I'm wondering about include:
Links to failed ideas would also be appreciated if it saves me trying them.
Then some other approaches:
There is some really smart stuff in here: http://www.robots.ox.ac.uk/~gk/publications/KleinDrummond2004IVC.pdf where they're doing edge detection (which could be used to find your marker borders, even though you're looking for quads right now), modelling the camera movements from the sensors, and using those values to estimate how an edge in the direction of blur should appear given the frame-rate, and searching for that. Very elegant.
Similarly here http://www.eecis.udel.edu/~jye/lab_research/11/BLUT_iccv_11.pdf they just pre-blur the tracking targets and try to match the blurred targets that are appropriate given the direction of blur. They use Gaussian filters to model blur, which are symmetrical, so you need half as many pre-blurred targets as you might initially expect.
If you do try implementing any of these, I'd be really interested to hear how you get on!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With