I frequently need to transform a dataframe to a list of lists. One of the keys is that I need to preserve the types (ie: a number stays a number, string stays a string). This is the function that I use currently:
dataframe_to_lists <- function(df){
return_list <- lapply(split(df, 1:nrow(df)), function(row) as.list(row))
return(return_list)
}
This is accurate but it is not fast when the number of rows grows large (>10K). What is the fastest way to do this in R?
Here is an example:
> example_df <- data.frame(col1 = c('a', 'b', 'c'), col2 = c(1, 2, 3), col3 = c(4, 5, 6), stringsAsFactors = FALSE)
> list_result <- dataframe_to_lists(example_df)
> list_result
$`1`
$`1`$col1
[1] "a"
$`1`$col2
[1] 1
$`1`$col3
[1] 4
$`2`
$`2`$col1
[1] "b"
$`2`$col2
[1] 2
$`2`$col3
[1] 5
$`3`
$`3`$col1
[1] "c"
$`3`$col2
[1] 3
$`3`$col3
[1] 6
Try:
lis <- rapply(df,as.list,how="list")
lis2 <- lapply(1:length(lis[[1]]), function(i) lapply(lis, "[[", i))
@A.Webb gave an easier and quicker solution:
do.call(function(...) Map(list,...),df)
Example:
set.seed(1)
df <- data.frame(col1 = letters[1:10], col2 = 1:10, col3 = rnorm(1:10))
df
col1 col2 col3
1 a 1 -0.6264538
2 b 2 0.1836433
3 c 3 -0.8356286
4 d 4 1.5952808
5 e 5 0.3295078
6 f 6 -0.8204684
7 g 7 0.4874291
8 h 8 0.7383247
9 i 9 0.5757814
10 j 10 -0.3053884
lis <- rapply(df,as.list,how="list")
lis2 <- lapply(1:length(lis[[1]]), function(i) lapply(lis, "[[", i))
head(lis2, 2)
[[1]]
[[1]]$col1
[1] a
Levels: a b c d e f g h i j
[[1]]$col2
[1] 1
[[1]]$col3
[1] -0.6264538
[[2]]
[[2]]$col1
[1] b
Levels: a b c d e f g h i j
[[2]]$col2
[1] 2
[[2]]$col3
[1] 0.1836433
Benchmark:
set.seed(123)
N <- 100000
df <- data.frame(col1 = rep("A", N), col2 = 1:N, col3 = rnorm(N))
system.time({
lis <- rapply(df,as.list,how="list")
lis2 <- lapply(1:length(lis[[1]]), function(i) lapply(lis, "[[", i))
})
user system elapsed
1.36 0.00 1.36
system.time(do.call(function(...) Map(list,...),df))
user system elapsed
0.69 0.00 0.69
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With