_radixSort_0 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; /* RADIX SORT Use 256 bins Use shadow array - Get counts - Transform counts to pointers - Sort from LSB - MSB */ function radixSort(intArr) { var cpy = new Int32Array(intArr.length); var c4 = [].concat(_radixSort_0); var c3 = [].concat(_radixSort_0); var c2 = [].concat(_radixSort_0); var c1 = [].concat(_radixSort_0); var o4 = 0; var t4; var o3 = 0; var t3; var o2 = 0; var t2; var o1 = 0; var t1; var x; for(x=0; x<intArr.length; x++) { t4 = intArr[x] & 0xFF; t3 = (intArr[x] >> 8) & 0xFF; t2 = (intArr[x] >> 16) & 0xFF; t1 = (intArr[x] >> 24) & 0xFF ^ 0x80; c4[t4]++; c3[t3]++; c2[t2]++; c1[t1]++; } for (x=0; x<256; x++) { t4 = o4 + c4[x]; t3 = o3 + c3[x]; t2 = o2 + c2[x]; t1 = o1 + c1[x]; c4[x] = o4; c3[x] = o3; c2[x] = o2; c1[x] = o1; o4 = t4; o3 = t3; o2 = t2; o1 = t1; } for(x=0; x<intArr.length; x++) { t4 = intArr[x] & 0xFF; cpy[c4[t4]] = intArr[x]; c4[t4]++; } for(x=0; x<intArr.length; x++) { t3 = (cpy[x] >> 8) & 0xFF; intArr[c3[t3]] = cpy[x]; c3[t3]++; } for(x=0; x<intArr.length; x++) { t2 = (intArr[x] >> 16) & 0xFF; cpy[c2[t2]] = intArr[x]; c2[t2]++; } for(x=0; x<intArr.length; x++) { t1 = (cpy[x] >> 24) & 0xFF ^ 0x80; intArr[c1[t1]] = cpy[x]; c1[t1]++; } return intArr; }
So far, the best/only major optimization brought to light is JS typed arrays. Using a typed array for the normal radix sort's shadow array has yielded the best results. I was also able to squeeze a little extra out of the in place quick sort using JS built in stack push/pop.
latest jsfiddle benchmark
Intel i7 870, 4GB, FireFox 8.0 2mil radixSort(intArr): 172 ms radixSortIP(intArr): 1738 ms quickSortIP(arr): 661 ms 200k radixSort(intArr): 18 ms radixSortIP(intArr): 26 ms quickSortIP(arr): 58 ms
It appears standard radix sort is indeed king for this work-flow. If someone has time to experiment with loop-unrolling or other modifications for it I would appreciate it.
I have a specific use case where I'd like the fastest possible sorting implementation in JavaScript. There will be large (50,000 - 2mil), unsorted (essentially random), integer (32bit signed) arrays that the client script will access, it then needs to sort and present this data.
I've implemented a fairly fast in place radix sort and in place quick sort jsfiddle benchmark but for my upper bound array length they are still fairly slow. The quick sort performs better on my upper bound array size while the radix sort performs better on my lower bound.
defaultSort is the built-in JavaScript array.sort with an integer compare function Intel C2Q 9650, 4GB, FireFox 3.6 2mil radixSortIP(intArr): 5554 ms quickSortIP(arr): 1796 ms 200k radixSortIP(intArr): 139 ms quickSortIP(arr): 190 ms defaultSort(intArr): 354 ms Intel i7 870, 4GB, FireFox 8.0 2mil radixSortIP(intArr): 990 ms quickSortIP(arr): 882 ms defaultSort(intArr): 3632 ms 200k radixSortIP(intArr): 28 ms quickSortIP(arr): 68 ms defaultSort(intArr): 306 ms
I've tested typed arrays, the QSIP version seems to be good in modern browsers:
2 000 000 elements
QSIP_TYPED | RDXIP_TYPED | QSIP_STD | RDXIP_STD ---------------------------------------------------------- Chrome | 300 1000 600 1300 Firefox | 550 1500 800 1600
http://jsfiddle.net/u8t2a/35/
Support (source: http://caniuse.com/typedarrays):
IE 10+ | FF 4+ | Chrome 7+ | Safari 5.1+ | Opera 11.6+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With