Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Fastest way to populate a matrix with a function on pairs of elements in two numpy vectors?

I have two 1 dimensional numpy vectors va and vb which are being used to populate a matrix by passing all pair combinations to a function.

na = len(va)
nb = len(vb)
D = np.zeros((na, nb))
for i in range(na):
    for j in range(nb):
        D[i, j] = foo(va[i], vb[j])

As it stands, this piece of code takes a very long time to run due to the fact that va and vb are relatively large (4626 and 737). However I am hoping this can be improved due to the fact that a similiar procedure is performed using the cdist method from scipy with very good performance.

D = cdist(va, vb, metric)

I am obviously aware that scipy has the benefit of running this piece of code in C rather than in python - but I'm hoping there is some numpy function im unaware of that can execute this quickly.

like image 381
Michael Aquilina Avatar asked Sep 01 '25 10:09

Michael Aquilina


1 Answers

One of the least known numpy functions for what the docs call functional programming routines is np.frompyfunc. This creates a numpy ufunc from a Python function. Not some other object that closely simulates a numpy ufunc, but a proper ufunc with all its bells and whistles. While the behavior is in many aspects very similar to np.vectorize, it has some distinct advantages, that hopefully the following code should highlight:

In [2]: def f(a, b):
   ...:     return a + b
   ...:

In [3]: f_vec = np.vectorize(f)

In [4]: f_ufunc = np.frompyfunc(f, 2, 1)  # 2 inputs, 1 output

In [5]: a = np.random.rand(1000)

In [6]: b = np.random.rand(2000)

In [7]: %timeit np.add.outer(a, b)  # a baseline for comparison
100 loops, best of 3: 9.89 ms per loop

In [8]: %timeit f_vec(a[:, None], b)  # 50x slower than np.add
1 loops, best of 3: 488 ms per loop

In [9]: %timeit f_ufunc(a[:, None], b)  # ~20% faster than np.vectorize...
1 loops, best of 3: 425 ms per loop

In [10]: %timeit f_ufunc.outer(a, b)  # ...and you get to use ufunc methods
1 loops, best of 3: 427 ms per loop

So while it is still clearly inferior to a properly vectorized implementation, it is a little faster (the looping is in C, but you still have the Python function call overhead).

like image 128
Jaime Avatar answered Sep 02 '25 23:09

Jaime