Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Fastest way to pop N items from a large dict

Tags:

I have a large dict src (up to 1M items) and I would like to take N (typical values would be N=10K-20K) items, store them in a new dict dst and leave only the remaining items in src. It doesn't matter which N items are taken. I'm looking for the fastest way to do it on Python 3.6 or 3.7.

Fastest approach I've found so far:

src = {i: i ** 3 for i in range(1000000)}

# Taking items 1 by 1 (~0.0059s)
dst = {}
while len(dst) < 20000:
    item = src.popitem()
    dst[item[0]] = item[1]

Is there anything better? Even a marginal gain would be good.

like image 961
Ivailo Karamanolev Avatar asked Mar 16 '19 17:03

Ivailo Karamanolev


People also ask

Can you pop from a dictionary Python?

Python Dictionary pop() Method Python pop() method removes an element from the dictionary. It removes the element which is associated to the specified key. If specified key is present in the dictionary, it remove and return its value. If the specified key is not present, it throws an error KeyError.

How do I save a large dictionary in Python?

If you just want to work with a larger dictionary than memory can hold, the shelve module is a good quick-and-dirty solution. It acts like an in-memory dict, but stores itself on disk rather than in memory. shelve is based on cPickle, so be sure to set your protocol to anything other than 0.


2 Answers

A simple comprehension inside dict will do:

dict(src.popitem() for _ in range(20000))

Here you have the timing tests

setup = """
src = {i: i ** 3 for i in range(1000000)}

def method_1(d):
  dst = {}
  while len(dst) < 20000:
      item = d.popitem()
      dst[item[0]] = item[1]
  return dst

def method_2(d):
  return dict(d.popitem() for _ in range(20000))
"""
import timeit
print("Method 1: ", timeit.timeit('method_1(src)', setup=setup, number=1))

print("Method 2: ", timeit.timeit('method_2(src)', setup=setup, number=1))

Results:

Method 1:  0.007701821999944514
Method 2:  0.004668198998842854
like image 62
Netwave Avatar answered Oct 12 '22 10:10

Netwave


This is a bit faster still:

from itertools import islice
def method_4(d):
    result = dict(islice(d.items(), 20000))
    for k in result: del d[k]
    return result

Compared to other versions, using Netwave's testcase:

Method 1:  0.004459443036466837  # original
Method 2:  0.0034434819826856256 # Netwave
Method 3:  0.002602717955596745  # chepner
Method 4:  0.001974945073015988  # this answer

The extra speedup seems to come from avoiding transitions between C and Python functions. From disassembly we can note that the dict instantiation happens on C side, with only 3 function calls from Python. The loop uses DELETE_SUBSCR opcode instead of needing a function call:

>>> dis.dis(method_4)
  2           0 LOAD_GLOBAL              0 (dict)
              2 LOAD_GLOBAL              1 (islice)
              4 LOAD_FAST                0 (d)
              6 LOAD_ATTR                2 (items)
              8 CALL_FUNCTION            0
             10 LOAD_CONST               1 (20000)
             12 CALL_FUNCTION            2
             14 CALL_FUNCTION            1
             16 STORE_FAST               1 (result)

  3          18 SETUP_LOOP              18 (to 38)
             20 LOAD_FAST                1 (result)
             22 GET_ITER
        >>   24 FOR_ITER                10 (to 36)
             26 STORE_FAST               2 (k)
             28 LOAD_FAST                0 (d)
             30 LOAD_FAST                2 (k)
             32 DELETE_SUBSCR
             34 JUMP_ABSOLUTE           24
        >>   36 POP_BLOCK

  4     >>   38 LOAD_FAST                1 (result)
             40 RETURN_VALUE

Compared with the iterator in method_2:

>>> dis.dis(d.popitem() for _ in range(20000))
  1           0 LOAD_FAST                0 (.0)
        >>    2 FOR_ITER                14 (to 18)
              4 STORE_FAST               1 (_)
              6 LOAD_GLOBAL              0 (d)
              8 LOAD_ATTR                1 (popitem)
             10 CALL_FUNCTION            0
             12 YIELD_VALUE
             14 POP_TOP
             16 JUMP_ABSOLUTE            2
        >>   18 LOAD_CONST               0 (None)
             20 RETURN_VALUE

which needs a Python to C function call for each item.

like image 28
jpa Avatar answered Oct 12 '22 09:10

jpa