I am trying to figure out the fastest way to perform search and sort on a pandas dataframe. Below are before and after dataframes of what I am trying to accomplish.
Before:
flightTo flightFrom toNum fromNum toCode fromCode
ABC DEF 123 456 8000 8000
DEF XYZ 456 893 9999 9999
AAA BBB 473 917 5555 5555
BBB CCC 917 341 5555 5555
After search/sort:
flightTo flightFrom toNum fromNum toCode fromCode
ABC XYZ 123 893 8000 9999
AAA CCC 473 341 5555 5555
In this example I am essentially trying to filter out 'flights' that exist in between end destinations. This should be done by using some sort of drop duplicates method but what leaves me confused is how to handle all of the columns. Would a binary search be the best way to accomplish this? Hints appreciated, trying hard to figure this out.
possible edge case:
What if the data is switched up and our end connections are in the same column?
flight1 flight2 1Num 2Num 1Code 2Code
ABC DEF 123 456 8000 8000
XYZ DEF 893 456 9999 9999
After search/sort:
flight1 flight2 1Num 2Num 1Code 2Code
ABC XYZ 123 893 8000 9999
This case logically shouldn't happen. After all how can you go DEF-ABC and DEF-XYZ? You can't, but the 'endpoints' would still be ABC-XYZ
Vectorization is always the first and best choice. You can convert the data frame to NumPy array or into dictionary format to speed up the iteration workflow. Iterating through the key-value pair of dictionaries comes out to be the fastest way with around 280x times speed up for 20 million records.
The results show that apply massively outperforms iterrows . As mentioned previously, this is because apply is optimized for looping through dataframe rows much quicker than iterrows does. While slower than apply , itertuples is quicker than iterrows , so if looping is required, try implementing itertuples instead.
The reason iterrows() is slower than itertuples() is due to iterrows() doing a lot of type checks in the lifetime of its call.
The query function seams more efficient than the loc function. DF2: 2K records x 6 columns. The loc function seams much more efficient than the query function.
Here's a NumPy solution, which might be convenient in the case performance is relevant:
def remove_middle_dest(df):
x = df.to_numpy()
# obtain a flat numpy array from both columns
b = x[:,0:2].ravel()
_, ix, inv = np.unique(b, return_index=True, return_inverse=True)
# Index of duplicate values in b
ixs_drop = np.setdiff1d(np.arange(len(b)), ix)
# Indices to be used to replace the content in the columns
replace_at = (inv[:,None] == inv[ixs_drop]).argmax(0)
# Col index of where duplicate value is, 0 or 1
col = (ixs_drop % 2) ^ 1
# 2d array to index and replace values in the df
# index to obtain values with which to replace
keep_cols = np.broadcast_to([3,5],(len(col),2))
ixs = np.concatenate([col[:,None], keep_cols], 1)
# translate indices to row indices
rows_drop, rows_replace = (ixs_drop // 2), (replace_at // 2)
c = np.empty((len(col), 5), dtype=x.dtype)
c[:,::2] = x[rows_drop[:,None], ixs]
c[:,1::2] = x[rows_replace[:,None], [2,4]]
# update dataframe and drop rows
df.iloc[rows_replace, 1:] = c
return df.drop(rows_drop)
Which fo the proposed dataframe yields the expected output:
print(df)
flightTo flightFrom toNum fromNum toCode fromCode
0 ABC DEF 123 456 8000 8000
1 DEF XYZ 456 893 9999 9999
2 AAA BBB 473 917 5555 5555
3 BBB CCC 917 341 5555 5555
remove_middle_dest(df)
flightTo flightFrom toNum fromNum toCode fromCode
0 ABC XYZ 123 893 8000 9999
2 AAA CCC 473 341 5555 5555
This approach does not assume any particular order in terms of the rows where the duplicate is, and the same applies to the columns (to cover the edge case described in the question). If we use for instance the following dataframe:
flightTo flightFrom toNum fromNum toCode fromCode
0 ABC DEF 123 456 8000 8000
1 XYZ DEF 893 456 9999 9999
2 AAA BBB 473 917 5555 5555
3 BBB CCC 917 341 5555 5555
remove_middle_dest(df)
flightTo flightFrom toNum fromNum toCode fromCode
0 ABC XYZ 123 456 8000 9999
2 AAA CCC 473 341 5555 5555
This is network problem , so we using networkx
, notice , here you can have more than two stops , which means you can have some case like NY-DC-WA-NC
import networkx as nx
G=nx.from_pandas_edgelist(df, 'flightTo', 'flightFrom')
# create the nx object from pandas dataframe
l=list(nx.connected_components(G))
# then we get the list of components which as tied to each other ,
# in a net work graph , they are linked
L=[dict.fromkeys(y,x) for x, y in enumerate(l)]
# then from the above we can create our map dict ,
# since every components connected to each other ,
# then we just need to pick of of them as key , then map with others
d={k: v for d in L for k, v in d.items()}
# create the dict for groupby , since we need _from as first item and _to as last item
grouppd=dict(zip(df.columns.tolist(),['first','last']*3))
df.groupby(df.flightTo.map(d)).agg(grouppd) # then using agg with dict yield your output
Out[22]:
flightTo flightFrom toNum fromNum toCode fromCode
flightTo
0 ABC XYZ 123 893 8000 9999
1 AAA CCC 473 341 5555 5555
Installation networkx
pip install networkx
conda install -c anaconda networkx
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With