I want to allocate a new array with the length N and fill it up by repeating a given array. The interface looks like this:
<T> T[] repeat(T[] array, int n);
To clarify what I mean here is a small example:
String a = {"a", "b", "c"};
// b = {"a", "b", "c", "a", "b", "c", "a", "b", "c", "a"}
String b = repeat(a, 10);
Most of the programmer will come up with the following solution (for simplicity of array generation a specific type was chosen):
public String[] repeat(String[] array, int n) {
String[] repeated = new String[n];
for (int i = 0; i < n; i++) {
repeated[i] = array[i % array.length];
}
return repeated;
}
Is there a faster way to do this?
To create an array with N elements containing the same value: Use the Array() constructor to create an array of N elements. Use the fill() method to fill the array with a specific value. The fill method changes all elements in the array to the supplied value.
Array.prototype.map() prototype. map() creates a new array by applying the provided transformation to each element of the original array. The result is an array with the same length as the original array and elements transformed based on the provided function.
var repeatelem = function(elem, n){ // returns an array with element elem repeated n times. var arr = []; for (var i = 0; i <= n; i++) { arr = arr. concat(elem); }; return arr; }; javascript.
The repeat() function is used to repeat elements of an array. Input array. The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
I came up with this generic solution:
public static <T> T[] repeat(T[] arr, int newLength) {
T[] dup = Arrays.copyOf(arr, newLength);
for (long last = arr.length; last != 0 && last < newLength; last <<= 1) {
System.arraycopy(dup, 0, dup, (int) last, (int) (Math.min(last << 1, newLength) - last));
}
return dup;
}
System.arraycopy
is a native call. Therefore it is very fast but it doesn't mean it is the fastest way.
Every other solution copys the array element by element. My solution copys larger blocks. Every iteration duplicates the existing elements in the array which means the loop will run at most log2(n) times.
TEST_ARRAY = { "a", "b", "c", "d", "e", "f" }
NEW_LENGTH = 10000
Here is my benchmark code to reproduce the results:
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Threads;
import org.openjdk.jmh.annotations.Warmup;
@Fork(3)
@BenchmarkMode(Mode.AverageTime)
@Measurement(iterations = 10, timeUnit = TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
@Threads(1)
@Warmup(iterations = 5, timeUnit = TimeUnit.NANOSECONDS)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
private static final String[] TEST_ARRAY = { "a", "b", "c", "d", "e", "f" };
private static final int NEW_LENGTH = 10_000;
@Benchmark
public String[] testNativeCall() {
String[] dup = Arrays.copyOf(TEST_ARRAY, NEW_LENGTH);
for (int last = TEST_ARRAY.length; last != 0 && last < NEW_LENGTH; last <<= 1) {
System.arraycopy(dup, 0, dup, last, Math.min(last << 1, NEW_LENGTH) - last);
}
return dup;
}
@Benchmark
public String[] testLoopModulo() {
String[] arr = new String[NEW_LENGTH];
for (int i = 0; i < NEW_LENGTH; i++) {
arr[i] = arr[i % TEST_ARRAY.length];
}
return arr;
}
@Benchmark
public String[] testArrayList() {
List<String> initialLetters = Arrays.asList(TEST_ARRAY);
List<String> results = new ArrayList<>();
int indexOfLetterToAdd = 0;
for (int i = 0; i < 10000; i++) {
results.add(initialLetters.get(indexOfLetterToAdd++));
if (indexOfLetterToAdd == initialLetters.size()) {
indexOfLetterToAdd = 0;
}
}
return results.toArray(new String[results.size()]);
}
@Benchmark
public String[] testLoopReset() {
String result[] = new String[NEW_LENGTH];
for (int i = 0, j = 0; i < NEW_LENGTH && j < TEST_ARRAY.length; i++, j++) {
result[i] = TEST_ARRAY[j];
if (j == TEST_ARRAY.length - 1) {
j = -1;
}
}
return result;
}
@Benchmark
public String[] testStream() {
String[] result = Stream.iterate(TEST_ARRAY, x -> x).flatMap(x -> Stream.of(TEST_ARRAY)).limit(NEW_LENGTH)
.toArray(String[]::new);
return result;
}
}
Benchmark Mode Cnt Score Error Units
MyBenchmark.testNativeCall avgt 30 4154,553 ± 11,242 ns/op
MyBenchmark.testLoopModulo avgt 30 19273,717 ± 235,547 ns/op
MyBenchmark.testArrayList avgt 30 71079,139 ± 2686,136 ns/op
MyBenchmark.testLoopReset avgt 30 18307,368 ± 202,520 ns/op
MyBenchmark.testStream avgt 30 68898,278 ± 2488,104 ns/op
As you can see the native call method is the fastest way to repeat an array.
Further I was asked to benchmark these methods with various inputs.
// Array size not fixed anymore - filled with random elements
SIZE = { 100, 1000, 100000, 1000000 }
NEW_LENGTH = { 100, 1000, 100000, 1000000 }
That means there are SIZE x NEW_LENGTH
tests and here are the results:
Benchmark (NEW_LENGTH) (SIZE) Mode Cnt Score Error Units
MyBenchmark.testArrayList 100 100 avgt 30 706,274 ± 6,787 ns/op
MyBenchmark.testArrayList 100 1000 avgt 30 692,586 ± 15,076 ns/op
MyBenchmark.testArrayList 100 100000 avgt 30 685,214 ± 6,747 ns/op
MyBenchmark.testArrayList 100 1000000 avgt 30 685,333 ± 5,493 ns/op
MyBenchmark.testArrayList 1000 100 avgt 30 7170,897 ± 63,221 ns/op
MyBenchmark.testArrayList 1000 1000 avgt 30 7180,612 ± 93,280 ns/op
MyBenchmark.testArrayList 1000 100000 avgt 30 6818,585 ± 197,859 ns/op
MyBenchmark.testArrayList 1000 1000000 avgt 30 6810,614 ± 139,456 ns/op
MyBenchmark.testArrayList 100000 100 avgt 30 597614,173 ± 6446,318 ns/op
MyBenchmark.testArrayList 100000 1000 avgt 30 580696,750 ± 5141,845 ns/op
MyBenchmark.testArrayList 100000 100000 avgt 30 598657,608 ± 5126,519 ns/op
MyBenchmark.testArrayList 100000 1000000 avgt 30 595529,027 ± 4981,095 ns/op
MyBenchmark.testArrayList 1000000 100 avgt 30 6836746,484 ± 38848,467 ns/op
MyBenchmark.testArrayList 1000000 1000 avgt 30 6745066,786 ± 57971,469 ns/op
MyBenchmark.testArrayList 1000000 100000 avgt 30 7130391,072 ± 50583,914 ns/op
MyBenchmark.testArrayList 1000000 1000000 avgt 30 8791342,042 ± 172323,938 ns/op
MyBenchmark.testLoopModulo 100 100 avgt 30 301,252 ± 1,195 ns/op
MyBenchmark.testLoopModulo 100 1000 avgt 30 301,988 ± 2,056 ns/op
MyBenchmark.testLoopModulo 100 100000 avgt 30 299,892 ± 1,776 ns/op
MyBenchmark.testLoopModulo 100 1000000 avgt 30 300,468 ± 2,569 ns/op
MyBenchmark.testLoopModulo 1000 100 avgt 30 3277,018 ± 14,880 ns/op
MyBenchmark.testLoopModulo 1000 1000 avgt 30 3275,648 ± 21,742 ns/op
MyBenchmark.testLoopModulo 1000 100000 avgt 30 3258,570 ± 27,360 ns/op
MyBenchmark.testLoopModulo 1000 1000000 avgt 30 3259,617 ± 28,747 ns/op
MyBenchmark.testLoopModulo 100000 100 avgt 30 321483,331 ± 4320,938 ns/op
MyBenchmark.testLoopModulo 100000 1000 avgt 30 326319,662 ± 2419,602 ns/op
MyBenchmark.testLoopModulo 100000 100000 avgt 30 327027,966 ± 3174,011 ns/op
MyBenchmark.testLoopModulo 100000 1000000 avgt 30 319201,057 ± 4472,220 ns/op
MyBenchmark.testLoopModulo 1000000 100 avgt 30 3053122,364 ± 31814,342 ns/op
MyBenchmark.testLoopModulo 1000000 1000 avgt 30 3134151,676 ± 108227,023 ns/op
MyBenchmark.testLoopModulo 1000000 100000 avgt 30 3220082,188 ± 43925,401 ns/op
MyBenchmark.testLoopModulo 1000000 1000000 avgt 30 3204777,236 ± 25365,542 ns/op
MyBenchmark.testLoopReset 100 100 avgt 30 159,828 ± 1,107 ns/op
MyBenchmark.testLoopReset 100 1000 avgt 30 125,461 ± 0,881 ns/op
MyBenchmark.testLoopReset 100 100000 avgt 30 129,912 ± 7,801 ns/op
MyBenchmark.testLoopReset 100 1000000 avgt 30 134,503 ± 7,602 ns/op
MyBenchmark.testLoopReset 1000 100 avgt 30 1809,207 ± 93,642 ns/op
MyBenchmark.testLoopReset 1000 1000 avgt 30 1728,705 ± 70,808 ns/op
MyBenchmark.testLoopReset 1000 100000 avgt 30 1354,887 ± 9,631 ns/op
MyBenchmark.testLoopReset 1000 1000000 avgt 30 1350,327 ± 15,886 ns/op
MyBenchmark.testLoopReset 100000 100 avgt 30 159680,209 ± 2477,183 ns/op
MyBenchmark.testLoopReset 100000 1000 avgt 30 162030,985 ± 1949,660 ns/op
MyBenchmark.testLoopReset 100000 100000 avgt 30 149299,890 ± 1516,486 ns/op
MyBenchmark.testLoopReset 100000 1000000 avgt 30 136059,242 ± 3090,410 ns/op
MyBenchmark.testLoopReset 1000000 100 avgt 30 1407369,992 ± 12979,717 ns/op
MyBenchmark.testLoopReset 1000000 1000 avgt 30 1447001,173 ± 14979,769 ns/op
MyBenchmark.testLoopReset 1000000 100000 avgt 30 1463913,706 ± 12564,617 ns/op
MyBenchmark.testLoopReset 1000000 1000000 avgt 30 1404701,860 ± 21587,436 ns/op
MyBenchmark.testNativeCall 100 100 avgt 30 58,306 ± 0,669 ns/op
MyBenchmark.testNativeCall 100 1000 avgt 30 57,441 ± 0,590 ns/op
MyBenchmark.testNativeCall 100 100000 avgt 30 57,595 ± 0,386 ns/op
MyBenchmark.testNativeCall 100 1000000 avgt 30 60,196 ± 1,995 ns/op
MyBenchmark.testNativeCall 1000 100 avgt 30 450,808 ± 8,259 ns/op
MyBenchmark.testNativeCall 1000 1000 avgt 30 558,079 ± 5,724 ns/op
MyBenchmark.testNativeCall 1000 100000 avgt 30 557,246 ± 4,873 ns/op
MyBenchmark.testNativeCall 1000 1000000 avgt 30 565,005 ± 9,696 ns/op
MyBenchmark.testNativeCall 100000 100 avgt 30 73074,811 ± 3332,432 ns/op
MyBenchmark.testNativeCall 100000 1000 avgt 30 70970,603 ± 2693,394 ns/op
MyBenchmark.testNativeCall 100000 100000 avgt 30 69907,864 ± 2945,072 ns/op
MyBenchmark.testNativeCall 100000 1000000 avgt 30 74041,205 ± 2599,841 ns/op
MyBenchmark.testNativeCall 1000000 100 avgt 30 790679,353 ± 15672,480 ns/op
MyBenchmark.testNativeCall 1000000 1000 avgt 30 812660,137 ± 25490,999 ns/op
MyBenchmark.testNativeCall 1000000 100000 avgt 30 838094,181 ± 12374,194 ns/op
MyBenchmark.testNativeCall 1000000 1000000 avgt 30 925567,535 ± 19091,943 ns/op
MyBenchmark.testStream 100 100 avgt 30 810,262 ± 54,519 ns/op
MyBenchmark.testStream 100 1000 avgt 30 1344,998 ± 14,792 ns/op
MyBenchmark.testStream 100 100000 avgt 30 159901,562 ± 3453,210 ns/op
MyBenchmark.testStream 100 1000000 avgt 30 1407506,571 ± 419985,287 ns/op
MyBenchmark.testStream 1000 100 avgt 30 6464,099 ± 169,665 ns/op
MyBenchmark.testStream 1000 1000 avgt 30 5869,457 ± 260,297 ns/op
MyBenchmark.testStream 1000 100000 avgt 30 165394,656 ± 4943,362 ns/op
MyBenchmark.testStream 1000 1000000 avgt 30 1352900,959 ± 412849,634 ns/op
MyBenchmark.testStream 100000 100 avgt 30 423531,274 ± 3944,801 ns/op
MyBenchmark.testStream 100000 1000 avgt 30 391727,181 ± 5341,826 ns/op
MyBenchmark.testStream 100000 100000 avgt 30 427462,700 ± 7517,953 ns/op
MyBenchmark.testStream 100000 1000000 avgt 30 981304,769 ± 10206,849 ns/op
MyBenchmark.testStream 1000000 100 avgt 30 4528465,859 ± 72959,405 ns/op
MyBenchmark.testStream 1000000 1000 avgt 30 4121720,516 ± 60283,781 ns/op
MyBenchmark.testStream 1000000 100000 avgt 30 5920334,609 ± 63051,631 ns/op
MyBenchmark.testStream 1000000 1000000 avgt 30 6227476,270 ± 84066,493 ns/op
As expected the native call is always ahead (about 2 times faster than the loop version).
You don't need to Min
on each loop, you can extract that to afterwards. You also double the offset twice in each loop.
However, mine doesn't appear to measurably faster, sometimes faster, sometimes not, but it's an alternative to the Min call.
Benchmark Mode Samples Score Score error Units
c.e.MyBenchmark.testNativeCall avgt 30 4027.890 26.544 ns/op
c.e.MyBenchmark.westonsRepeat avgt 30 4035.817 49.168 ns/op
Code:
@Benchmark
public String[] westonsRepeat() {
String[] sourceArray = TEST_ARRAY;
int newLength = NEW_LENGTH;
int offset = sourceArray.length;
String[] dup = Arrays.copyOf(sourceArray, newLength);
if (offset == 0 || offset >= newLength) return dup;
int next = offset << 1;
while (next < newLength) {
System.arraycopy(dup, 0, dup, offset, offset);
offset = next;
next <<= 1;
}
System.arraycopy(dup, 0, dup, offset, newLength - offset);
return dup;
}
The other thing I tried was calculating the number of times I could safely double and while it was some what a dead end performance wise I thought it interesting to show:
int timesCanDouble = (int)(log2(newLength) - log2(offset));
=>
int timesCanDouble = (int)(log2(newLength/offset));
=>
int timesCanDouble = 31 - numberOfLeadingZeros(newLength/offset));
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With