I have a large DataFrame (million +) records I'm using to store core of my data (like a database) and I then have a smaller DataFrame (1 to 2000) records that I'm combining a few of the columns for each time step in my program which can be several thousand time steps . Both DataFrames are indexed the same way by a id column.
the code I'm using is:
df_large.loc[new_ids, core_cols] = df_small.loc[new_ids, core_cols]
Where core_cols is a list of about 10 fields that I'm coping over and new_ids are the ids from the small DataFrame. This code works fine but it is the slowest part of my code my a magnitude of three. I just wanted to know if they was a faster way to merge the data of the two DataFrame together.
I tried merging the data each time with the merge function but process took way to long that is way I have gone to creating a larger DataFrame that I update to improve the speed.
There is nothing inherently slow about using .loc
to set with an alignable frame, though it does go through a bit of code to cover lot of cases, so probably it's not ideal to have in a tight loop. FYI, this example is slightly different that the 2nd example.
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pandas import DataFrame
In [4]: df = DataFrame(1.,index=list('abcdefghij'),columns=[0,1,2])
In [5]: df
Out[5]:
0 1 2
a 1 1 1
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1 1
f 1 1 1
g 1 1 1
h 1 1 1
i 1 1 1
j 1 1 1
[10 rows x 3 columns]
In [6]: df2 = DataFrame(0,index=list('afg'),columns=[1,2])
In [7]: df2
Out[7]:
1 2
a 0 0
f 0 0
g 0 0
[3 rows x 2 columns]
In [8]: df.loc[df2.index,df2.columns] = df2
In [9]: df
Out[9]:
0 1 2
a 1 0 0
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1 1
f 1 0 0
g 1 0 0
h 1 1 1
i 1 1 1
j 1 1 1
[10 rows x 3 columns]
Here's an alternative. It may or may not fit your data pattern. If the updates (your small frame) are pretty much independent this would work (IOW you are not updating the big frame, then picking out a new sub-frame, then updating, etc. - if this is your pattern, then using .loc
is about right).
Instead of updating the big frame, update the small frame with the columns from the big frame, e.g.:
In [10]: df = DataFrame(1.,index=list('abcdefghij'),columns=[0,1,2])
In [11]: df2 = DataFrame(0,index=list('afg'),columns=[1,2])
In [12]: needed_columns = df.columns-df2.columns
In [13]: df2[needed_columns] = df.reindex(index=df2.index,columns=needed_columns)
In [14]: df2
Out[14]:
1 2 0
a 0 0 1
f 0 0 1
g 0 0 1
[3 rows x 3 columns]
In [15]: df3 = DataFrame(0,index=list('cji'),columns=[1,2])
In [16]: needed_columns = df.columns-df3.columns
In [17]: df3[needed_columns] = df.reindex(index=df3.index,columns=needed_columns)
In [18]: df3
Out[18]:
1 2 0
c 0 0 1
j 0 0 1
i 0 0 1
[3 rows x 3 columns]
And concat everything together when you want (they are kept in a list in the mean time, or see my comments below, these sub-frames could be moved to external storage when created, then read back before this concatenating step).
In [19]: pd.concat([ df.reindex(index=df.index-df2.index-df3.index), df2, df3]).reindex_like(df)
Out[19]:
0 1 2
a 1 0 0
b 1 1 1
c 1 0 0
d 1 1 1
e 1 1 1
f 1 0 0
g 1 0 0
h 1 1 1
i 1 0 0
j 1 0 0
[10 rows x 3 columns]
The beauty of this pattern is that it is easily extended to using an actual db (or much better an HDFStore
), to actually store the 'database', then creating/updating sub-frames as needed, then writing out to a new store when finished.
I use this pattern all of the time, though with Panels actually.
I am able to use multi-processes to perform my computations AND write each individual Panel to a file separate as they are all completely independent. The only dependent part is the concat.
This is essentially a map-reduce pattern.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With