Pandigital number is a number that contains the digits 1..number length.
For example 123, 4312 and 967412385.
I have solved many Project Euler problems, but the Pandigital problems always exceed the one minute rule.
This is my pandigital function:
private boolean isPandigital(int n){
Set<Character> set= new TreeSet<Character>();
String string = n+"";
for (char c:string.toCharArray()){
if (c=='0') return false;
set.add(c);
}
return set.size()==string.length();
}
Create your own function and test it with this method
int pans=0;
for (int i=123456789;i<=123987654;i++){
if (isPandigital(i)){
pans++;
}
}
Using this loop, you should get 720 pandigital numbers. My average time was 500 millisecond.
I'm using Java, but the question is open to any language.
UPDATE
@andras answer has the best time so far, but @Sani Huttunen answer inspired me to add a new algorithm, which gets almost the same time as @andras.
A number is said to be pandigital if it contains each of the digits from 0 to 9 (and whose leading digit must be nonzero). However, "zeroless" pandigital quantities contain the digits 1 through 9. Sometimes exclusivity is also required so that each digit is restricted to appear exactly once.
In mathematics, a pandigital number is an integer that in a given base has among its significant digits each digit used in the base at least once. For example, 1234567890 (one billion two hundred thirty four million five hundred sixty seven thousand eight hundred ninety) is a pandigital number in base 10.
C#, 17ms, if you really want a check.
class Program { static bool IsPandigital(int n) { int digits = 0; int count = 0; int tmp; for (; n > 0; n /= 10, ++count) { if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1))) return false; } return digits == (1 << count) - 1; } static void Main() { int pans = 0; Stopwatch sw = new Stopwatch(); sw.Start(); for (int i = 123456789; i <= 123987654; i++) { if (IsPandigital(i)) { pans++; } } sw.Stop(); Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds); Console.ReadKey(); } }
For a check that is consistent with the Wikipedia definition in base 10:
const int min = 1023456789; const int expected = 1023; static bool IsPandigital(int n) { if (n >= min) { int digits = 0; for (; n > 0; n /= 10) { digits |= 1 << (n - ((n / 10) * 10)); } return digits == expected; } return false; }
To enumerate numbers in the range you have given, generating permutations would suffice.
The following is not an answer to your question in the strict sense, since it does not implement a check. It uses a generic permutation implementation not optimized for this special case - it still generates the required 720 permutations in 13ms (line breaks might be messed up):
static partial class Permutation { /// <summary> /// Generates permutations. /// </summary> /// <typeparam name="T">Type of items to permute.</typeparam> /// <param name="items">Array of items. Will not be modified.</param> /// <param name="comparer">Optional comparer to use. /// If a <paramref name="comparer"/> is supplied, /// permutations will be ordered according to the /// <paramref name="comparer"/> /// </param> /// <returns>Permutations of input items.</returns> public static IEnumerable<IEnumerable<T>> Permute<T>(T[] items, IComparer<T> comparer) { int length = items.Length; IntPair[] transform = new IntPair[length]; if (comparer == null) { //No comparer. Start with an identity transform. for (int i = 0; i < length; i++) { transform[i] = new IntPair(i, i); }; } else { //Figure out where we are in the sequence of all permutations int[] initialorder = new int[length]; for (int i = 0; i < length; i++) { initialorder[i] = i; } Array.Sort(initialorder, delegate(int x, int y) { return comparer.Compare(items[x], items[y]); }); for (int i = 0; i < length; i++) { transform[i] = new IntPair(initialorder[i], i); } //Handle duplicates for (int i = 1; i < length; i++) { if (comparer.Compare( items[transform[i - 1].Second], items[transform[i].Second]) == 0) { transform[i].First = transform[i - 1].First; } } } yield return ApplyTransform(items, transform); while (true) { //Ref: E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1997 //Find the largest partition from the back that is in decreasing (non-icreasing) order int decreasingpart = length - 2; for (;decreasingpart >= 0 && transform[decreasingpart].First >= transform[decreasingpart + 1].First; --decreasingpart) ; //The whole sequence is in decreasing order, finished if (decreasingpart < 0) yield break; //Find the smallest element in the decreasing partition that is //greater than (or equal to) the item in front of the decreasing partition int greater = length - 1; for (;greater > decreasingpart && transform[decreasingpart].First >= transform[greater].First; greater--) ; //Swap the two Swap(ref transform[decreasingpart], ref transform[greater]); //Reverse the decreasing partition Array.Reverse(transform, decreasingpart + 1, length - decreasingpart - 1); yield return ApplyTransform(items, transform); } } #region Overloads public static IEnumerable<IEnumerable<T>> Permute<T>(T[] items) { return Permute(items, null); } public static IEnumerable<IEnumerable<T>> Permute<T>(IEnumerable<T> items, IComparer<T> comparer) { List<T> list = new List<T>(items); return Permute(list.ToArray(), comparer); } public static IEnumerable<IEnumerable<T>> Permute<T>(IEnumerable<T> items) { return Permute(items, null); } #endregion Overloads #region Utility public static IEnumerable<T> ApplyTransform<T>( T[] items, IntPair[] transform) { for (int i = 0; i < transform.Length; i++) { yield return items[transform[i].Second]; } } public static void Swap<T>(ref T x, ref T y) { T tmp = x; x = y; y = tmp; } public struct IntPair { public IntPair(int first, int second) { this.First = first; this.Second = second; } public int First; public int Second; } #endregion } class Program { static void Main() { int pans = 0; int[] digits = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; Stopwatch sw = new Stopwatch(); sw.Start(); foreach (var p in Permutation.Permute(digits)) { pans++; if (pans == 720) break; } sw.Stop(); Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds); Console.ReadKey(); } }
This is my solution:
static char[][] pandigits = new char[][]{ "1".toCharArray(), "12".toCharArray(), "123".toCharArray(), "1234".toCharArray(), "12345".toCharArray(), "123456".toCharArray(), "1234567".toCharArray(), "12345678".toCharArray(), "123456789".toCharArray(), }; private static boolean isPandigital(int i) { char[] c = String.valueOf(i).toCharArray(); Arrays.sort(c); return Arrays.equals(c, pandigits[c.length-1]); }
Runs the loop in 0.3 seconds on my (rather slow) system.
Two things you can improve:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With