I am trying to solve an online judge problem: http://opc.iarcs.org.in/index.php/problems/LEAFEAT
The problem in short:
If we are given an integer L and a set of N integers s1,s2,s3..sN, we have to find how many numbers there are from 0 to L-1 which are not divisible by any of the 'si's.
For example, if we are given, L = 20
and S = {3,2,5}
then there are 6 numbers from 0 to 19 which are not divisible by 3,2 or 5.
L <= 1000000000 and N <= 20.
I used the Inclusion-Exclusion principle to solve this problem:
/*Let 'T' be the number of integers that are divisible by any of the 'si's in the
given range*/
for i in range 1 to N
for all subsets A of length i
if i is odd then:
T += 1 + (L-1)/lcm(all the elements of A)
else
T -= 1 + (L-1)/lcm(all the elements of A)
return T
Here is my code to solve this problem
#include <stdio.h>
int N;
long long int L;
int C[30];
typedef struct{int i, key;}subset_e;
subset_e A[30];
int k;
int gcd(a,b){
int t;
while(b != 0){
t = a%b;
a = b;
b = t;
}
return a;
}
long long int lcm(int a, int b){
return (a*b)/gcd(a,b);
}
long long int getlcm(int n){
if(n == 1){
return A[0].key;
}
int i;
long long int rlcm = lcm(A[0].key,A[1].key);
for(i = 2;i < n; i++){
rlcm = lcm(rlcm,A[i].key);
}
return rlcm;
}
int next_subset(int n){
if(k == n-1 && A[k].i == N-1){
if(k == 0){
return 0;
}
k--;
}
while(k < n-1 && A[k].i == A[k+1].i-1){
if(k <= 0){
return 0;
}
k--;
}
A[k].key = C[A[k].i+1];
A[k].i++;
return 1;
}
int main(){
int i,j,add;
long long int sum = 0,g,temp;
scanf("%lld%d",&L,&N);
for(i = 0;i < N; i++){
scanf("%d",&C[i]);
}
for(i = 1; i <= N; i++){
add = i%2;
for(j = 0;j < i; j++){
A[j].key = C[j];
A[j].i = j;
}
temp = getlcm(i);
g = 1 + (L-1)/temp;
if(add){
sum += g;
} else {
sum -= g;
}
k = i-1;
while(next_subset(i)){
temp = getlcm(i);
g = 1 + (L-1)/temp;
if(add){
sum += g;
} else {
sum -= g;
}
}
}
printf("%lld",L-sum);
return 0;
}
The next_subset(n)
generates the next subset of size n in the array A
, if there is no subset it returns 0 otherwise it returns 1. It is based on the algorithm described by the accepted answer in this stackoverflow question.
The lcm(a,b)
function returns the lcm of a and b.
The get_lcm(n)
function returns the lcm of all the elements in A
.
It uses the property : LCM(a,b,c) = LCM(LCM(a,b),c)
When I submit the problem on the judge it gives my a 'Time Limit Exceeded'. If we solve this using brute force we get only 50% of the marks.
As there can be upto 2^20 subsets my algorithm might be slow, hence I need a better algorithm to solve this problem.
EDIT:
After editing my code and changing the function to the Euclidean algorithm, I am getting a wrong answer, but my code runs within the time limit. It gives me a correct answer to the example test but not to any other test cases; here is a link to ideone where I ran my code, the first output is correct but the second is not.
Is my approach to this problem correct? If it is then I have made a mistake in my code, and I'll find it; otherwise can anyone please explain what is wrong?
Divisibility by 7 can be checked by a recursive method. A number of the form 10a + b is divisible by 7 if and only if a – 2b is divisible by 7. In other words, subtract twice the last digit from the number formed by the remaining digits. Continue to do this until a small number.
numbers are not divisible by 7 between 100 and 1000. Therefore, we have got the first answer as 128 and the second one as 771.
Answer. Numbers not divisible by any number except 1 and itself are called composite number. hope it will help you. please mark it as brainliest.
We know that there are 25 prime numbers between 1 and 100. Since 2, 3, 5 and 7 are prime numbers, total prime numbers, which are not divisible by 2, 3, 5 and 7, are (25 - 4) 21.
You could also try changing your lcm
function to use the Euclidean algorithm.
int gcd(int a, int b) {
int t;
while (b != 0) {
t = b;
b = a % t;
a = t;
}
return a;
}
int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
At least with Python, the speed differences between the two are pretty large:
>>> %timeit lcm1(103, 2013)
100000 loops, best of 3: 9.21 us per loop
>>> %timeit lcm2(103, 2013)
1000000 loops, best of 3: 1.02 us per loop
Typically, the lowest common multiple of a subset of k
of the s_i
will exceed L
for k
much smaller than 20. So you need to stop early.
Probably, just inserting
if (temp >= L) {
break;
}
after
while(next_subset(i)){
temp = getlcm(i);
will be sufficient.
Also, shortcut if there are any 1
s among the s_i
, all numbers are divisible by 1.
I think the following will be faster:
unsigned gcd(unsigned a, unsigned b) {
unsigned r;
while(b) {
r = a%b;
a = b;
b = r;
}
return a;
}
unsigned recur(unsigned *arr, unsigned len, unsigned idx, unsigned cumul, unsigned bound) {
if (idx >= len || bound == 0) {
return bound;
}
unsigned i, g, s = arr[idx], result;
g = s/gcd(cumul,s);
result = bound/g;
for(i = idx+1; i < len; ++i) {
result -= recur(arr, len, i, cumul*g, bound/g);
}
return result;
}
unsigned inex(unsigned *arr, unsigned len, unsigned bound) {
unsigned i, result = bound, t;
for(i = 0; i < len; ++i) {
result -= recur(arr, len, i, 1, bound);
}
return result;
}
call it with
unsigned S[N] = {...};
inex(S, N, L-1);
You need not add the 1 for the 0 anywhere, since 0 is divisible by all numbers, compute the count of numbers 1 <= k < L
which are not divisible by any s_i
.
Create an array of flags with L entries. Then mark each touched leaf:
for(each size in list of sizes) {
length = 0;
while(length < L) {
array[length] = TOUCHED;
length += size;
}
}
Then find the untouched leaves:
for(length = 0; length < L; length++) {
if(array[length] != TOUCHED) { /* Untouched leaf! */ }
}
Note that there is no multiplication and no division involved; but you will need up to about 1 GiB of RAM. If RAM is a problem the you can use an array of bits (max. 120 MiB).
This is only a beginning though, as there are repeating patterns that can be copied instead of generated. The first pattern is from 0 to S1*S2, the next is from 0 to S1*S2*S3, the next is from 0 to S1*S2*S3*S4, etc.
Basically, you can set all values touched by S1 and then S2 from 0 to S1*S2; then copy the pattern from 0 to S1*S2 until you get to S1*S2*S3 and set all the S3's between S3 and S1*S2*S3; then copy that pattern until you get to S1*S2*S3*S4 and set all the S4's between S4 and S1*S2*S3*S4 and so on.
Next; if S1*S2*...Sn is smaller than L, you know the pattern will repeat and can generate the results for lengths from S1*S2*...Sn to L from the pattern. In this case the size of the array only needs to be S1*S2*...Sn and doesn't need to be L.
Finally, if S1*S2*...Sn is larger than L; then you could generate the pattern for S1*S2*...(Sn-1) and use that pattern to create the results from S1*S2*...(Sn-1) to S1*S2*...Sn. In this case if S1*S2*...(Sn-1) is smaller than L then the array doesn't need to be as large as L.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With