I'm looking for a way to truncate a float
into an int
in a fast and portable (IEEE 754) way. The reason is because in this function 50% of the time is spent in the cast:
float fm_sinf(float x) {
const float a = 0.00735246819687011731341356165096815f;
const float b = -0.16528911397014738207016302002888890f;
const float c = 0.99969198629596757779830113868360584f;
float r, x2;
int k;
/* bring x in range */
k = (int) (F_1_PI * x + copysignf(0.5f, x)); /* <-- 50% of time is spent in cast */
x -= k * F_PI;
/* if x is in an odd pi count we must flip */
r = 1 - 2 * (k & 1); /* trick for r = (k % 2) == 0 ? 1 : -1; */
x2 = x * x;
return r * x*(c + x2*(b + a*x2));
}
The slowness of float->int casts mainly occurs when using x87 FPU instructions on x86. To do the truncation, the rounding mode in the FPU control word needs to be changed to round-to-zero and back, which tends to be very slow.
When using SSE instead of x87 instructions, a truncation is available without control word changes. You can do this using compiler options (like -mfpmath=sse -msse -msse2
in GCC) or by compiling the code as 64-bit.
The SSE3 instruction set has the FISTTP
instruction to convert to integer with truncation without changing the control word. A compiler may generate this instruction if instructed to assume SSE3.
Alternatively, the C99 lrint()
function will convert to integer with the current rounding mode (round-to-nearest unless you changed it). You can use this if you remove the copysignf
term. Unfortunately, this function is still not ubiquitous after more than ten years.
I found a fast truncate method by Sree Kotay which provides exactly the optimization that I needed.
to be portable you would have to add some directives and learn a couple assembler languages but you could theoretically could use some inline assembly to move portions of the floating point register into eax/rax ebx/rbx and convert what you would need by hand, floating point specification though is a pain in the butt, but I am pretty certain that if you do it with assembly you will be way faster, as your needs are very specific and the system method is probably more generic and less efficient for your purpose
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With