EDIT: clarified description of problem
Is there a fast algorithm solving following problem?
And, is also for extendend version of this problem
that is replaced natural numbers to Z/(2^n Z)?(This problem was too complex to add more quesion in one place, IMO.)
For a given set of natural numbers like {7, 20, 17, 100}, required algorithm returns the shortest sequence of additions, mutliplications and powers compute all of given numbers. Each item of sequence are (correct) equation that matches following pattern:
<number> = <number> <op> <number>
where <number> is a natual number, <op> is one of {+, *, ^}.
In the sequence, each operand of <op> should be one of
Input: {7, 20, 17, 100}
Output:
2 = 1 + 1
3 = 1 + 2
6 = 2 * 3
7 = 1 + 6
10 = 3 + 7
17 = 7 + 10
20 = 2 * 10
100 = 10 ^ 2
I wrote backtracking algorithm in Haskell. it works for small input like above, but my real query is randomly distributed ~30 numbers in [0,255]. for real query, following code takes 2~10 minutes in my PC.
(Actual code, very simple test)
-- generate set of sets required to compute n.
-- operater (+) on set is set union.
requiredNumbers 0 = { {} }
requiredNumbers 1 = { {} }
requiredNumbers n =
{ {j, k} | j^k == n, j >= 2, k >= 2 }
+ { {j, k} | j*k == n, j >= 2, k >= 2 }
+ { {j, k} | j+k == n, j >= 1, k >= 1 }
-- remember the smallest set of "computed" number
bestSet := {i | 1 <= i <= largeNumber}
-- backtracking algorithm
-- from: input
-- to: accumulator of "already computed" number
closure from to =
if (from is empty)
if (|bestSet| > |to|)
bestSet := to
return
else if (|from| + |to| >= |bestSet|)
-- cut branch
return
else
m := min(from)
from' := deleteMin(from)
foreach (req in (requiredNumbers m))
closure (from' + (req - to)) (to + {m})
-- recoverEquation is a function converts set of number to set of equation.
-- it can be done easily.
output = recoverEquation (closure input {})
Answers like
are also welcomed. Now I'm feeling that there is no fast and exact algorithm...
Answer #1 can be used as a heuristic, I think.
We use a Directed Acyclic Graph (DAG) to implement this optimization.
An arithmetic expression is an expression using additions +, subtractions -, multiplications *, divisions /, and exponentials **. A single mode arithmetic expression is an expression all of whose operands are of the same type (i.e. INTEGER, REAL or COMPLEX).
Parentheses may be used in expressions to specify the order of evaluation. Expressions within parentheses are evaluated first. When parentheses are nested, the innermost set of parentheses is evaluated first, and then successively more inclusive parentheses are evaluated.
What if you worked backwards from the highest number in a sorted input, checking if/how to utilize the smaller numbers (and numbers that are being introduced) in its construction?
For example, although this may not guarantee the shortest sequence...
input: {7, 20, 17, 100}
(100) = (20) * 5 =>
(7) = 5 + 2 =>
(17) = 10 + (7) =>
(20) = 10 * 2 =>
10 = 5 * 2 =>
5 = 3 + 2 =>
3 = 2 + 1 =>
2 = 1 + 1
What I recommend is to transform it into some kind of graph shortest path algorithm.
1
with the weight of zeroYou can build your expression using the "backlinks" (operation, left and right operands) for each of your target numbers.
The main point is that we always keep our eye on the target function, which is that the total number of operation must be the minimum possible. In order to get this, we always calculate the shortest path to a certain number, then considering that number (and all the other numbers on the way) as given numbers, then extending our search to the remaining targets.
Theoretically, this algorithm processes (registers) each numbers only once. Applying the proper filters cuts the unnecessary branches, so nothing is calculated twice (except the weights of the in-queue elements)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With