I am trying to find an optimized C or Assembler implementation of a function that multiplies two 4x4 matrices with each other. The platform is an ARM6 or ARM7 based iPhone or iPod.
Currently, I am using a fairly standard approach - just a little loop-unrolled.
#define O(y,x) (y + (x<<2)) static inline void Matrix4x4MultiplyBy4x4 (float *src1, float *src2, float *dest) { *(dest+O(0,0)) = (*(src1+O(0,0)) * *(src2+O(0,0))) + (*(src1+O(0,1)) * *(src2+O(1,0))) + (*(src1+O(0,2)) * *(src2+O(2,0))) + (*(src1+O(0,3)) * *(src2+O(3,0))); *(dest+O(0,1)) = (*(src1+O(0,0)) * *(src2+O(0,1))) + (*(src1+O(0,1)) * *(src2+O(1,1))) + (*(src1+O(0,2)) * *(src2+O(2,1))) + (*(src1+O(0,3)) * *(src2+O(3,1))); *(dest+O(0,2)) = (*(src1+O(0,0)) * *(src2+O(0,2))) + (*(src1+O(0,1)) * *(src2+O(1,2))) + (*(src1+O(0,2)) * *(src2+O(2,2))) + (*(src1+O(0,3)) * *(src2+O(3,2))); *(dest+O(0,3)) = (*(src1+O(0,0)) * *(src2+O(0,3))) + (*(src1+O(0,1)) * *(src2+O(1,3))) + (*(src1+O(0,2)) * *(src2+O(2,3))) + (*(src1+O(0,3)) * *(src2+O(3,3))); *(dest+O(1,0)) = (*(src1+O(1,0)) * *(src2+O(0,0))) + (*(src1+O(1,1)) * *(src2+O(1,0))) + (*(src1+O(1,2)) * *(src2+O(2,0))) + (*(src1+O(1,3)) * *(src2+O(3,0))); *(dest+O(1,1)) = (*(src1+O(1,0)) * *(src2+O(0,1))) + (*(src1+O(1,1)) * *(src2+O(1,1))) + (*(src1+O(1,2)) * *(src2+O(2,1))) + (*(src1+O(1,3)) * *(src2+O(3,1))); *(dest+O(1,2)) = (*(src1+O(1,0)) * *(src2+O(0,2))) + (*(src1+O(1,1)) * *(src2+O(1,2))) + (*(src1+O(1,2)) * *(src2+O(2,2))) + (*(src1+O(1,3)) * *(src2+O(3,2))); *(dest+O(1,3)) = (*(src1+O(1,0)) * *(src2+O(0,3))) + (*(src1+O(1,1)) * *(src2+O(1,3))) + (*(src1+O(1,2)) * *(src2+O(2,3))) + (*(src1+O(1,3)) * *(src2+O(3,3))); *(dest+O(2,0)) = (*(src1+O(2,0)) * *(src2+O(0,0))) + (*(src1+O(2,1)) * *(src2+O(1,0))) + (*(src1+O(2,2)) * *(src2+O(2,0))) + (*(src1+O(2,3)) * *(src2+O(3,0))); *(dest+O(2,1)) = (*(src1+O(2,0)) * *(src2+O(0,1))) + (*(src1+O(2,1)) * *(src2+O(1,1))) + (*(src1+O(2,2)) * *(src2+O(2,1))) + (*(src1+O(2,3)) * *(src2+O(3,1))); *(dest+O(2,2)) = (*(src1+O(2,0)) * *(src2+O(0,2))) + (*(src1+O(2,1)) * *(src2+O(1,2))) + (*(src1+O(2,2)) * *(src2+O(2,2))) + (*(src1+O(2,3)) * *(src2+O(3,2))); *(dest+O(2,3)) = (*(src1+O(2,0)) * *(src2+O(0,3))) + (*(src1+O(2,1)) * *(src2+O(1,3))) + (*(src1+O(2,2)) * *(src2+O(2,3))) + (*(src1+O(2,3)) * *(src2+O(3,3))); *(dest+O(3,0)) = (*(src1+O(3,0)) * *(src2+O(0,0))) + (*(src1+O(3,1)) * *(src2+O(1,0))) + (*(src1+O(3,2)) * *(src2+O(2,0))) + (*(src1+O(3,3)) * *(src2+O(3,0))); *(dest+O(3,1)) = (*(src1+O(3,0)) * *(src2+O(0,1))) + (*(src1+O(3,1)) * *(src2+O(1,1))) + (*(src1+O(3,2)) * *(src2+O(2,1))) + (*(src1+O(3,3)) * *(src2+O(3,1))); *(dest+O(3,2)) = (*(src1+O(3,0)) * *(src2+O(0,2))) + (*(src1+O(3,1)) * *(src2+O(1,2))) + (*(src1+O(3,2)) * *(src2+O(2,2))) + (*(src1+O(3,3)) * *(src2+O(3,2))); *(dest+O(3,3)) = (*(src1+O(3,0)) * *(src2+O(0,3))) + (*(src1+O(3,1)) * *(src2+O(1,3))) + (*(src1+O(3,2)) * *(src2+O(2,3))) + (*(src1+O(3,3)) * *(src2+O(3,3))); };
Would I benefit from using the Strassen- or the Coppersmith–Winograd algorithm?
the two adjacent dimensions must be the same. This means it is not possible to multiply a 4x4 matrix with a 1x4 matrix, but it is possible to multiply 4x4 by 4x1 to get a 4x1 matrix or 1x4 by 4x4 to get a 1x4 matrix.
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.
someMatrix is a 4x4 matrix and vertexPosition is ALWAYS a 3x1 matrix that is converted to a 4x1 matrix with the addition of the 1.0. So a 4x4 matrix multiplied by a 4x1 matrix will produce again a valid 4x1 matrix (i.e. the gl_Position ).
No, the Strassen or Coppersmith-Winograd algorithm wouldn't make much difference here. They start to pay off for larger matrices only.
If your matrix-multiplication is really a bottleneck you could rewrite the algorithm using NEON SIMD instructions. That would only help for ARMv7 as ARMv6 does not has this extension though.
I'd expect a factor 3 speedup over the compiled C-code for your case.
EDIT: You can find a nice implementation in ARM-NEON here: http://code.google.com/p/math-neon/
For your C-code there are two things you could do to speed up the code:
Don't inline the function. Your matrix multiplication generates quite a bit of code as it's unrolled, and the ARM only has a very tiny instruction cache. Excessive inlining can make your code slower because the CPU will be busy loading code into the cache instead of executing it.
Use the restrict keyword to tell the compiler that the source- and destination pointers don't overlap in memory. Currently the compiler is forced to reload every source value from memory whenever a result is written because it has to assume that source and destination may overlap or even point to the same memory.
Just nitpicking. I wonder why people still obfuscate their code voluntarly? C is already difficult to read, no need to add to it.
static inline void Matrix4x4MultiplyBy4x4 (float src1[4][4], float src2[4][4], float dest[4][4])
{
dest[0][0] = src1[0][0] * src2[0][0] + src1[0][1] * src2[1][0] + src1[0][2] * src2[2][0] + src1[0][3] * src2[3][0];
dest[0][1] = src1[0][0] * src2[0][1] + src1[0][1] * src2[1][1] + src1[0][2] * src2[2][1] + src1[0][3] * src2[3][1];
dest[0][2] = src1[0][0] * src2[0][2] + src1[0][1] * src2[1][2] + src1[0][2] * src2[2][2] + src1[0][3] * src2[3][2];
dest[0][3] = src1[0][0] * src2[0][3] + src1[0][1] * src2[1][3] + src1[0][2] * src2[2][3] + src1[0][3] * src2[3][3];
dest[1][0] = src1[1][0] * src2[0][0] + src1[1][1] * src2[1][0] + src1[1][2] * src2[2][0] + src1[1][3] * src2[3][0];
dest[1][1] = src1[1][0] * src2[0][1] + src1[1][1] * src2[1][1] + src1[1][2] * src2[2][1] + src1[1][3] * src2[3][1];
dest[1][2] = src1[1][0] * src2[0][2] + src1[1][1] * src2[1][2] + src1[1][2] * src2[2][2] + src1[1][3] * src2[3][2];
dest[1][3] = src1[1][0] * src2[0][3] + src1[1][1] * src2[1][3] + src1[1][2] * src2[2][3] + src1[1][3] * src2[3][3];
dest[2][0] = src1[2][0] * src2[0][0] + src1[2][1] * src2[1][0] + src1[2][2] * src2[2][0] + src1[2][3] * src2[3][0];
dest[2][1] = src1[2][0] * src2[0][1] + src1[2][1] * src2[1][1] + src1[2][2] * src2[2][1] + src1[2][3] * src2[3][1];
dest[2][2] = src1[2][0] * src2[0][2] + src1[2][1] * src2[1][2] + src1[2][2] * src2[2][2] + src1[2][3] * src2[3][2];
dest[2][3] = src1[2][0] * src2[0][3] + src1[2][1] * src2[1][3] + src1[2][2] * src2[2][3] + src1[2][3] * src2[3][3];
dest[3][0] = src1[3][0] * src2[0][0] + src1[3][1] * src2[1][0] + src1[3][2] * src2[2][0] + src1[3][3] * src2[3][0];
dest[3][1] = src1[3][0] * src2[0][1] + src1[3][1] * src2[1][1] + src1[3][2] * src2[2][1] + src1[3][3] * src2[3][1];
dest[3][2] = src1[3][0] * src2[0][2] + src1[3][1] * src2[1][2] + src1[3][2] * src2[2][2] + src1[3][3] * src2[3][2];
dest[3][3] = src1[3][0] * src2[0][3] + src1[3][1] * src2[1][3] + src1[3][2] * src2[2][3] + src1[3][3] * src2[3][3];
};
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With