I am trying to implement the layer normalization in a fully connected neural network with keras. The issue I have met is that all the loss are NaN
and it doesn't learn. Here is my code:
class DenseLN(Layer):
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None, bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.output_dim = output_dim
self.input_dim = input_dim
self.epsilon = 1e-5
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=2)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(DenseLN, self).__init__(**kwargs)
def ln(self, x):
# layer normalization function
m = K.mean(x, axis=0)
std = K.sqrt(K.var(x, axis=0) + self.epsilon)
x_normed = (x - m) / (std + self.epsilon)
x_normed = self.gamma * x_normed + self.beta
return x_normed
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = [InputSpec(dtype=K.floatx(),
shape=(None, input_dim))]
self.gamma = K.variable(np.ones(self.output_dim) * 0.2, name='{}_gamma'.format(self.name))
self.beta = K.zeros((self.output_dim,), name='{}_beta'.format(self.name))
self.W = self.init((input_dim, self.output_dim),
name='{}_W'.format(self.name))
if self.bias:
self.b = K.zeros((self.output_dim,),
name='{}_b'.format(self.name))
self.trainable_weights = [self.W, self.gamma, self.beta, self.b]
else:
self.trainable_weights = [self.W, self.gamma, self.beta]
self.regularizers = []
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
if self.bias and self.b_regularizer:
self.b_regularizer.set_param(self.b)
self.regularizers.append(self.b_regularizer)
if self.activity_regularizer:
self.activity_regularizer.set_layer(self)
self.regularizers.append(self.activity_regularizer)
self.constraints = {}
if self.W_constraint:
self.constraints[self.W] = self.W_constraint
if self.bias and self.b_constraint:
self.constraints[self.b] = self.b_constraint
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
def call(self, x, mask=None):
output = K.dot(x, self.W)
output = self.ln(output)
#print (theano.tensor.shape(output))
if self.bias:
output += self.b
return self.activation(output)
def get_output_shape_for(self, input_shape):
assert input_shape and len(input_shape) == 2
return (input_shape[0], self.output_dim)
model = Sequential()
model.add(Dense(12, activation='sigmoid', input_dim=12))
model.add(DenseLN(98, activation='sigmoid'))
model.add(DenseLN(108, activation='sigmoid'))
model.add(DenseLN(1))
adadelta = Adadelta(lr=0.1, rho=0.95, epsilon=1e-08)
adagrad = Adagrad(lr=0.003, epsilon=1e-08)
model.compile(loss='poisson',
optimizer=adagrad,
metrics=['accuracy'])
model.fit(X_train_scale,
Y_train,
batch_size=3000,
callbacks=[history],
nb_epoch=300)
Do you know what's wrong here and how can I fix it? Thanks in advance!
EDIT:
I have also tried some combinations of the layers and found something weired. If the input and output layer are both normal Dense
layer, the accuracy would be very low, nearly zero. But if the input layer is DenseLN
, i.e., my customized layer, the accuracy would be 0.6+
at first and after tens of iterations, it reduced to zero again. Indeed I copied most of the code from Dense
layer and all the difference is the ln
function and self.ln(output)
in call
function. Besides, I have also added the gamma
and beta
to the trainable_weights
.
Any help is appreciated!
It's a lot cleaner and more flexible if you implement it as a separate layer. Something like this should work:
class LayerNorm(Layer):
""" Layer Normalization in the style of https://arxiv.org/abs/1607.06450 """
def __init__(self, scale_initializer='ones', bias_initializer='zeros', **kwargs):
super(LayerNorm, self).__init__(**kwargs)
self.epsilon = 1e-6
self.scale_initializer = initializers.get(scale_initializer)
self.bias_initializer = initializers.get(bias_initializer)
def build(self, input_shape):
self.scale = self.add_weight(shape=(input_shape[-1],),
initializer=self.scale_initializer,
trainable=True,
name='{}_scale'.format(self.name))
self.bias = self.add_weight(shape=(input_shape[-1],),
initializer=self.bias_initializer,
trainable=True,
name='{}_bias'.format(self.name))
self.built = True
def call(self, x, mask=None):
mean = K.mean(x, axis=-1, keepdims=True)
std = K.std(x, axis=-1, keepdims=True)
norm = (x - mean) * (1/(std + self.epsilon))
return norm * self.scale + self.bias
def compute_output_shape(self, input_shape):
return input_shape
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With