I am trying to implement facenet in Keras with Tensorflow backend and I have some problem with the triplet loss.
I call the fit function with 3*n number of images and then I define my custom loss function as follows:
def triplet_loss(self, y_true, y_pred): embeddings = K.reshape(y_pred, (-1, 3, output_dim)) positive_distance = K.mean(K.square(embeddings[:,0] - embeddings[:,1]),axis=-1) negative_distance = K.mean(K.square(embeddings[:,0] - embeddings[:,2]),axis=-1) return K.mean(K.maximum(0.0, positive_distance - negative_distance + _alpha)) self._model.compile(loss=triplet_loss, optimizer="sgd") self._model.fit(x=x,y=y,nb_epoch=1, batch_size=len(x))
where y is just a dummy array filled with 0s
The problem is that even after the first iteration with batch size 20 the model starts predicting the same embedding for all the images. So when I first do the prediction on the batch every embedding is different. Then I do the fit and predict again and suddenly all the embeddings becomes almost the same for all the images in the batch
Also notice that there is a Lambda layer at the end of the model. It normalizes the output of the net so all the embeddings has a unit length as it was suggested in the face net study.
Can anybody help me out here?
Model summary
Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 224, 224, 3) 0 ____________________________________________________________________________________________________ convolution2d_1 (Convolution2D) (None, 112, 112, 64) 9472 input_1[0][0] ____________________________________________________________________________________________________ batchnormalization_1 (BatchNormal(None, 112, 112, 64) 128 convolution2d_1[0][0] ____________________________________________________________________________________________________ maxpooling2d_1 (MaxPooling2D) (None, 56, 56, 64) 0 batchnormalization_1[0][0] ____________________________________________________________________________________________________ convolution2d_2 (Convolution2D) (None, 56, 56, 64) 4160 maxpooling2d_1[0][0] ____________________________________________________________________________________________________ batchnormalization_2 (BatchNormal(None, 56, 56, 64) 128 convolution2d_2[0][0] ____________________________________________________________________________________________________ convolution2d_3 (Convolution2D) (None, 56, 56, 192) 110784 batchnormalization_2[0][0] ____________________________________________________________________________________________________ batchnormalization_3 (BatchNormal(None, 56, 56, 192) 384 convolution2d_3[0][0] ____________________________________________________________________________________________________ maxpooling2d_2 (MaxPooling2D) (None, 28, 28, 192) 0 batchnormalization_3[0][0] ____________________________________________________________________________________________________ convolution2d_5 (Convolution2D) (None, 28, 28, 96) 18528 maxpooling2d_2[0][0] ____________________________________________________________________________________________________ convolution2d_7 (Convolution2D) (None, 28, 28, 16) 3088 maxpooling2d_2[0][0] ____________________________________________________________________________________________________ maxpooling2d_3 (MaxPooling2D) (None, 28, 28, 192) 0 maxpooling2d_2[0][0] ____________________________________________________________________________________________________ convolution2d_4 (Convolution2D) (None, 28, 28, 64) 12352 maxpooling2d_2[0][0] ____________________________________________________________________________________________________ convolution2d_6 (Convolution2D) (None, 28, 28, 128) 110720 convolution2d_5[0][0] ____________________________________________________________________________________________________ convolution2d_8 (Convolution2D) (None, 28, 28, 32) 12832 convolution2d_7[0][0] ____________________________________________________________________________________________________ convolution2d_9 (Convolution2D) (None, 28, 28, 32) 6176 maxpooling2d_3[0][0] ____________________________________________________________________________________________________ merge_1 (Merge) (None, 28, 28, 256) 0 convolution2d_4[0][0] convolution2d_6[0][0] convolution2d_8[0][0] convolution2d_9[0][0] ____________________________________________________________________________________________________ convolution2d_11 (Convolution2D) (None, 28, 28, 96) 24672 merge_1[0][0] ____________________________________________________________________________________________________ convolution2d_13 (Convolution2D) (None, 28, 28, 32) 8224 merge_1[0][0] ____________________________________________________________________________________________________ maxpooling2d_4 (MaxPooling2D) (None, 28, 28, 256) 0 merge_1[0][0] ____________________________________________________________________________________________________ convolution2d_10 (Convolution2D) (None, 28, 28, 64) 16448 merge_1[0][0] ____________________________________________________________________________________________________ convolution2d_12 (Convolution2D) (None, 28, 28, 128) 110720 convolution2d_11[0][0] ____________________________________________________________________________________________________ convolution2d_14 (Convolution2D) (None, 28, 28, 64) 51264 convolution2d_13[0][0] ____________________________________________________________________________________________________ convolution2d_15 (Convolution2D) (None, 28, 28, 64) 16448 maxpooling2d_4[0][0] ____________________________________________________________________________________________________ merge_2 (Merge) (None, 28, 28, 320) 0 convolution2d_10[0][0] convolution2d_12[0][0] convolution2d_14[0][0] convolution2d_15[0][0] ____________________________________________________________________________________________________ convolution2d_16 (Convolution2D) (None, 28, 28, 128) 41088 merge_2[0][0] ____________________________________________________________________________________________________ convolution2d_18 (Convolution2D) (None, 28, 28, 32) 10272 merge_2[0][0] ____________________________________________________________________________________________________ convolution2d_17 (Convolution2D) (None, 14, 14, 256) 295168 convolution2d_16[0][0] ____________________________________________________________________________________________________ convolution2d_19 (Convolution2D) (None, 14, 14, 64) 51264 convolution2d_18[0][0] ____________________________________________________________________________________________________ maxpooling2d_5 (MaxPooling2D) (None, 14, 14, 320) 0 merge_2[0][0] ____________________________________________________________________________________________________ merge_3 (Merge) (None, 14, 14, 640) 0 convolution2d_17[0][0] convolution2d_19[0][0] maxpooling2d_5[0][0] ____________________________________________________________________________________________________ convolution2d_21 (Convolution2D) (None, 14, 14, 96) 61536 merge_3[0][0] ____________________________________________________________________________________________________ convolution2d_23 (Convolution2D) (None, 14, 14, 32) 20512 merge_3[0][0] ____________________________________________________________________________________________________ maxpooling2d_6 (MaxPooling2D) (None, 14, 14, 640) 0 merge_3[0][0] ____________________________________________________________________________________________________ convolution2d_20 (Convolution2D) (None, 14, 14, 256) 164096 merge_3[0][0] ____________________________________________________________________________________________________ convolution2d_22 (Convolution2D) (None, 14, 14, 192) 166080 convolution2d_21[0][0] ____________________________________________________________________________________________________ convolution2d_24 (Convolution2D) (None, 14, 14, 64) 51264 convolution2d_23[0][0] ____________________________________________________________________________________________________ convolution2d_25 (Convolution2D) (None, 14, 14, 128) 82048 maxpooling2d_6[0][0] ____________________________________________________________________________________________________ merge_4 (Merge) (None, 14, 14, 640) 0 convolution2d_20[0][0] convolution2d_22[0][0] convolution2d_24[0][0] convolution2d_25[0][0] ____________________________________________________________________________________________________ convolution2d_27 (Convolution2D) (None, 14, 14, 112) 71792 merge_4[0][0] ____________________________________________________________________________________________________ convolution2d_29 (Convolution2D) (None, 14, 14, 32) 20512 merge_4[0][0] ____________________________________________________________________________________________________ maxpooling2d_7 (MaxPooling2D) (None, 14, 14, 640) 0 merge_4[0][0] ____________________________________________________________________________________________________ convolution2d_26 (Convolution2D) (None, 14, 14, 224) 143584 merge_4[0][0] ____________________________________________________________________________________________________ convolution2d_28 (Convolution2D) (None, 14, 14, 224) 226016 convolution2d_27[0][0] ____________________________________________________________________________________________________ convolution2d_30 (Convolution2D) (None, 14, 14, 64) 51264 convolution2d_29[0][0] ____________________________________________________________________________________________________ convolution2d_31 (Convolution2D) (None, 14, 14, 128) 82048 maxpooling2d_7[0][0] ____________________________________________________________________________________________________ merge_5 (Merge) (None, 14, 14, 640) 0 convolution2d_26[0][0] convolution2d_28[0][0] convolution2d_30[0][0] convolution2d_31[0][0] ____________________________________________________________________________________________________ convolution2d_33 (Convolution2D) (None, 14, 14, 128) 82048 merge_5[0][0] ____________________________________________________________________________________________________ convolution2d_35 (Convolution2D) (None, 14, 14, 32) 20512 merge_5[0][0] ____________________________________________________________________________________________________ maxpooling2d_8 (MaxPooling2D) (None, 14, 14, 640) 0 merge_5[0][0] ____________________________________________________________________________________________________ convolution2d_32 (Convolution2D) (None, 14, 14, 192) 123072 merge_5[0][0] ____________________________________________________________________________________________________ convolution2d_34 (Convolution2D) (None, 14, 14, 256) 295168 convolution2d_33[0][0] ____________________________________________________________________________________________________ convolution2d_36 (Convolution2D) (None, 14, 14, 64) 51264 convolution2d_35[0][0] ____________________________________________________________________________________________________ convolution2d_37 (Convolution2D) (None, 14, 14, 128) 82048 maxpooling2d_8[0][0] ____________________________________________________________________________________________________ merge_6 (Merge) (None, 14, 14, 640) 0 convolution2d_32[0][0] convolution2d_34[0][0] convolution2d_36[0][0] convolution2d_37[0][0] ____________________________________________________________________________________________________ convolution2d_39 (Convolution2D) (None, 14, 14, 144) 92304 merge_6[0][0] ____________________________________________________________________________________________________ convolution2d_41 (Convolution2D) (None, 14, 14, 32) 20512 merge_6[0][0] ____________________________________________________________________________________________________ maxpooling2d_9 (MaxPooling2D) (None, 14, 14, 640) 0 merge_6[0][0] ____________________________________________________________________________________________________ convolution2d_38 (Convolution2D) (None, 14, 14, 160) 102560 merge_6[0][0] ____________________________________________________________________________________________________ convolution2d_40 (Convolution2D) (None, 14, 14, 288) 373536 convolution2d_39[0][0] ____________________________________________________________________________________________________ convolution2d_42 (Convolution2D) (None, 14, 14, 64) 51264 convolution2d_41[0][0] ____________________________________________________________________________________________________ convolution2d_43 (Convolution2D) (None, 14, 14, 128) 82048 maxpooling2d_9[0][0] ____________________________________________________________________________________________________ merge_7 (Merge) (None, 14, 14, 640) 0 convolution2d_38[0][0] convolution2d_40[0][0] convolution2d_42[0][0] convolution2d_43[0][0] ____________________________________________________________________________________________________ convolution2d_44 (Convolution2D) (None, 14, 14, 160) 102560 merge_7[0][0] ____________________________________________________________________________________________________ convolution2d_46 (Convolution2D) (None, 14, 14, 64) 41024 merge_7[0][0] ____________________________________________________________________________________________________ convolution2d_45 (Convolution2D) (None, 7, 7, 256) 368896 convolution2d_44[0][0] ____________________________________________________________________________________________________ convolution2d_47 (Convolution2D) (None, 7, 7, 128) 204928 convolution2d_46[0][0] ____________________________________________________________________________________________________ maxpooling2d_10 (MaxPooling2D) (None, 7, 7, 640) 0 merge_7[0][0] ____________________________________________________________________________________________________ merge_8 (Merge) (None, 7, 7, 1024) 0 convolution2d_45[0][0] convolution2d_47[0][0] maxpooling2d_10[0][0] ____________________________________________________________________________________________________ convolution2d_49 (Convolution2D) (None, 7, 7, 192) 196800 merge_8[0][0] ____________________________________________________________________________________________________ convolution2d_51 (Convolution2D) (None, 7, 7, 48) 49200 merge_8[0][0] ____________________________________________________________________________________________________ maxpooling2d_11 (MaxPooling2D) (None, 7, 7, 1024) 0 merge_8[0][0] ____________________________________________________________________________________________________ convolution2d_48 (Convolution2D) (None, 7, 7, 384) 393600 merge_8[0][0] ____________________________________________________________________________________________________ convolution2d_50 (Convolution2D) (None, 7, 7, 384) 663936 convolution2d_49[0][0] ____________________________________________________________________________________________________ convolution2d_52 (Convolution2D) (None, 7, 7, 128) 153728 convolution2d_51[0][0] ____________________________________________________________________________________________________ convolution2d_53 (Convolution2D) (None, 7, 7, 128) 131200 maxpooling2d_11[0][0] ____________________________________________________________________________________________________ merge_9 (Merge) (None, 7, 7, 1024) 0 convolution2d_48[0][0] convolution2d_50[0][0] convolution2d_52[0][0] convolution2d_53[0][0] ____________________________________________________________________________________________________ convolution2d_55 (Convolution2D) (None, 7, 7, 192) 196800 merge_9[0][0] ____________________________________________________________________________________________________ convolution2d_57 (Convolution2D) (None, 7, 7, 48) 49200 merge_9[0][0] ____________________________________________________________________________________________________ maxpooling2d_12 (MaxPooling2D) (None, 7, 7, 1024) 0 merge_9[0][0] ____________________________________________________________________________________________________ convolution2d_54 (Convolution2D) (None, 7, 7, 384) 393600 merge_9[0][0] ____________________________________________________________________________________________________ convolution2d_56 (Convolution2D) (None, 7, 7, 384) 663936 convolution2d_55[0][0] ____________________________________________________________________________________________________ convolution2d_58 (Convolution2D) (None, 7, 7, 128) 153728 convolution2d_57[0][0] ____________________________________________________________________________________________________ convolution2d_59 (Convolution2D) (None, 7, 7, 128) 131200 maxpooling2d_12[0][0] ____________________________________________________________________________________________________ merge_10 (Merge) (None, 7, 7, 1024) 0 convolution2d_54[0][0] convolution2d_56[0][0] convolution2d_58[0][0] convolution2d_59[0][0] ____________________________________________________________________________________________________ averagepooling2d_1 (AveragePoolin(None, 1, 1, 1024) 0 merge_10[0][0] ____________________________________________________________________________________________________ flatten_1 (Flatten) (None, 1024) 0 averagepooling2d_1[0][0] ____________________________________________________________________________________________________ dense_1 (Dense) (None, 128) 131200 flatten_1[0][0] ____________________________________________________________________________________________________ lambda_1 (Lambda) (None, 128) 0 dense_1[0][0] ==================================================================================================== Total params: 7456944 ____________________________________________________________________________________________________ None
A triplet loss is used in this case. is an embedding. The indices are for individual input vectors given as a triplet. The triplet is formed by drawing an anchor input, a positive input that describes the same entity as the anchor entity, and a negative input that does not describe the same entity as the anchor entity.
To train the model we want our images to have same size and they must contain faces only. To get training data we will use a face detection algorithm called Multi-task Cascaded Convolutional Neural Networks (MTCNN). Use the script named align_dataset_mtcnn.py to align faces. This code is taken from facenet.
What could have happened, other than the learning rate was simply too high, was that an unstable triplet selection strategy had been used, effectively. If, for example, you only use 'hard triplets' (triplets where the a-n distance is smaller than the a-p distance), your network weights might collapse all embeddings to a single point (making the loss always equal to margin (your _alpha
), because all embedding distances are zero).
This can be fixed by using other kinds of triplets as well (like 'semi-hard triplets' where a-p is smaller than a-n, but the distance between a-p and a-n is still smaller than margin). So maybe if you always checked for this... It is explained in more detail in this blog post: https://omoindrot.github.io/triplet-loss
Are you constraining your embeddings to "be on a d-dimensional hypersphere"? Try running tf.nn.l2_normalize
on your embeddings right after they come out of the CNN.
The problem could be that the embeddings are sort of being smart-alecs. One easy way to reduce the loss is to just set everything to zero. l2_normalize
forces them to be unit length.
It looks you'll want to add the normalizing right after the last average pool.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With