Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Extracting 3D coordinates given 2D image points, depth map and camera calibration matrices

I have a set of 2D image keypoints that are outputted from the OpenCV FAST corner detection function. Using an Asus Xtion I also have a time-synchronised depth map with all camera calibration parameters known. Using this information I would like to extract a set of 3D coordinates (point cloud) in OpenCV.

Can anyone give me any pointers regarding how to do so? Thanks in advance!

like image 520
Will Andrew Avatar asked Jul 07 '15 09:07

Will Andrew


1 Answers

Nicolas Burrus has created a great tutorial for Depth Sensors like Kinect.

http://nicolas.burrus.name/index.php/Research/KinectCalibration

I'll copy & paste the most important parts:

Mapping depth pixels with color pixels

The first step is to undistort rgb and depth images using the estimated distortion coefficients. Then, using the depth camera intrinsics, each pixel (x_d,y_d) of the depth camera can be projected to metric 3D space using the following formula:

P3D.x = (x_d - cx_d) * depth(x_d,y_d) / fx_d
P3D.y = (y_d - cy_d) * depth(x_d,y_d) / fy_d
P3D.z = depth(x_d,y_d)

with fx_d, fy_d, cx_d and cy_d the intrinsics of the depth camera.

If you are further interested in stereo mapping (values for kinect):

We can then reproject each 3D point on the color image and get its color:

P3D' = R.P3D + T 
P2D_rgb.x = (P3D'.x * fx_rgb / P3D'.z) + cx_rgb
P2D_rgb.y = (P3D'.y * fy_rgb / P3D'.z) + cy_rgb

with R and T the rotation and translation parameters estimated during the stereo calibration.

The parameters I could estimate for my Kinect are:

Color

fx_rgb 5.2921508098293293e+02 
fy_rgb 5.2556393630057437e+02 
cx_rgb 3.2894272028759258e+02 
cy_rgb 2.6748068171871557e+02 
k1_rgb 2.6451622333009589e-01 
k2_rgb -8.3990749424620825e-01 
p1_rgb -1.9922302173693159e-03 
p2_rgb 1.4371995932897616e-03 
k3_rgb 9.1192465078713847e-01

Depth

fx_d 5.9421434211923247e+02 
fy_d 5.9104053696870778e+02 
cx_d 3.3930780975300314e+02 
cy_d 2.4273913761751615e+02 
k1_d -2.6386489753128833e-01 
k2_d 9.9966832163729757e-01 
p1_d -7.6275862143610667e-04 
p2_d 5.0350940090814270e-03 
k3_d -1.3053628089976321e+00

Relative transform between the sensors (in meters)

R [ 9.9984628826577793e-01, 1.2635359098409581e-03, -1.7487233004436643e-02, 
-1.4779096108364480e-03, 9.9992385683542895e-01, -1.2251380107679535e-02,
1.7470421412464927e-02, 1.2275341476520762e-02, 9.9977202419716948e-01 ]

T [ 1.9985242312092553e-02, -7.4423738761617583e-04, -1.0916736334336222e-02 ]
like image 56
Micka Avatar answered Oct 22 '22 18:10

Micka