I am wrapping a C file so I can use it in python. The output of the C function is an array of doubles. I want this to be a numpy array in python. I get garbage. Here's an example that generates the error.
First, the C file (focus on the last function definition, everything else should be OK):
#include <Python.h>
#include <numpy/arrayobject.h>
#include <stdio.h>
static char module_docstring[] =
"docstring";
static char error_docstring[] =
"generate the error";
static PyObject *_aux_error(PyObject *self, PyObject *args);
static PyMethodDef module_methods[] = {
{"error", _aux_error, METH_VARARGS, error_docstring},
{NULL, NULL, 0, NULL}
};
PyMODINIT_FUNC init_tmp(void) {
PyObject *m = Py_InitModule3("_tmp", module_methods, module_docstring);
if (m == NULL)
return;
/* Load `numpy` functionality. */
import_array();
}
static PyObject *_aux_error(PyObject *self ,PyObject *args) {
double vector[2] = {1.0 , 2.0};
npy_intp dims[1] = { 2 };
PyObject *ret = PyArray_SimpleNewFromData(1, dims, (int)NPY_FLOAT , vector );
return ret;
}
Compilation goes OK (from what I understand - I used a python script that compiles everything).
In python, I run the following script to test my new module:
try:
import _tmp
res = _tmp.error()
print(res)
except:
print("fail")
The result I see on the screen is garbage. I tried substituting (int)NPY_FLOAT
with (int)NPY_FLOAT32, (int)NPY_FLOAT64, (int)NPY_DOUBLE
and I still get garbage.
I am using python2.7.
Thanks!!!
EDIT: following the answer below, I changed the last function to:
static PyObject *_aux_error(PyObject *self, PyObject *args) {
double *vector = calloc(2, sizeof(double));
vector[0] = 1.0;
vector[1] = 2.0;
npy_intp *dims = calloc(1 , sizeof(npy_intp));
dims[1] = 2;
PyObject *ret = PyArray_SimpleNewFromData(1, dims, (int)NPY_FLOAT , &vector );
return ret;
}
Now python shows an empty array.
Try changing this:
static PyObject *_aux_error(PyObject *self) {
to this:
static PyObject *_aux_error(PyObject *self, PyObject *args) {
Python will pass the args
argument, even if you don't define your function with it.
There's still a fundamental problem with your code. You have created a numpy array using an array, vector
, that is on the stack. When _aux_error
returns, that memory is reclaimed and might be reused.
You could create the array using PyArray_SimpleNew()
to allocate the numpy array, and then copy vector
to the array's data:
static PyObject *_aux_error(PyObject *self, PyObject *args)
{
double vector[2] = {1.0 , 2.0};
npy_intp dims[1] = {2};
PyObject *ret = PyArray_SimpleNew(1, dims, NPY_DOUBLE);
memcpy(PyArray_DATA(ret), vector, sizeof(vector));
return ret;
}
Note that I changed the type to NPY_DOUBLE
; NPY_FLOAT
is the 32 bit floating point type.
In a comment, you asked about dynamically allocating the memory in _aux_error
. Here's a variation of the example that might be useful. The length of the array is still hardcoded in dims
, so it isn't completely general, but it might be enough to address the question from the comments.
static PyObject *_aux_error(PyObject *self, PyObject *args)
{
double *vector;
npy_intp dims[1] = {5};
npy_intp k;
PyObject *ret = PyArray_SimpleNew(1, dims, NPY_DOUBLE);
vector = (double *) PyArray_DATA(ret);
/*
* NOTE: Treating PyArray_DATA(ret) as if it were a contiguous one-dimensional C
* array is safe, because we just created it with PyArray_SimpleNew, so we know
* that it is, in fact, a one-dimensional contiguous array.
*/
for (k = 0; k < dims[0]; ++k) {
vector[k] = 1.0 + k;
}
return ret;
}
Here is my full solution, for your amusement. Copy, paste and modify. Obviously the problem I was faced with is a bit more complicated than the question above. I used some of Dan Foreman Mackay's online code.
The goal of my code is to return a covariance vector (whatever that is). I have a C file named aux.c
that returns a newly allocated array:
#include "aux.h"
#include <math.h>
#include <stdlib.h>
double *covVec(double *X, double *x, int nvecs, int veclen) {
double r = 1.3;
double d = 1.0;
double result;
double dist;
int n;
double *k;
k = malloc(nvecs * sizeof(double));
int row;
for( row = 0 ; row < nvecs ; row++) {
result = 0.0;
for (n = 0; n < veclen; n++) {
dist = x[n] - X[row*veclen + n];
result += dist * dist;
}
result = d*exp( -result/(2.0*r*r) );
k[row] = result;
}
return k;
}
Then, I need a very short header file named aux.h
:
double *covVec(double *X, double *x, int nvecs, int veclen);
To wrap this to python I have _aux.c
:
#include <Python.h>
#include <numpy/arrayobject.h>
#include "aux.h"
#include <stdio.h>
static char module_docstring[] =
"This module provides an interface for calculating covariance using C.";
static char cov_vec_docstring[] =
"Calculate the covariances between a vector and a list of vectors.";
static PyObject *_aux_covVec(PyObject *self, PyObject *args);
static PyMethodDef module_methods[] = {
{"cov_vec", _aux_covVec, METH_VARARGS, cov_vec_docstring},
{NULL, NULL, 0, NULL}
};
PyMODINIT_FUNC init_aux(void) {
PyObject *m = Py_InitModule3("_aux", module_methods, module_docstring);
if (m == NULL)
return;
/* Load `numpy` functionality. */
import_array();
}
static PyObject *_aux_covVec(PyObject *self, PyObject *args)
{
PyObject *X_obj, *x_obj;
/* Parse the input tuple */
if (!PyArg_ParseTuple(args, "OO", &X_obj, &x_obj ))
return NULL;
/* Interpret the input objects as numpy arrays. */
PyObject *X_array = PyArray_FROM_OTF(X_obj, NPY_DOUBLE, NPY_IN_ARRAY);
PyObject *x_array = PyArray_FROM_OTF(x_obj, NPY_DOUBLE, NPY_IN_ARRAY);
/* If that didn't work, throw an exception. */
if (X_array == NULL || x_array == NULL ) {
Py_XDECREF(X_array);
Py_XDECREF(x_array);
return NULL;
}
/* What are the dimensions? */
int nvecs = (int)PyArray_DIM(X_array, 0);
int veclen = (int)PyArray_DIM(X_array, 1);
int xlen = (int)PyArray_DIM(x_array, 0);
/* Get pointers to the data as C-types. */
double *X = (double*)PyArray_DATA(X_array);
double *x = (double*)PyArray_DATA(x_array);
/* Call the external C function to compute the covariance. */
double *k = covVec(X, x, nvecs, veclen);
if ( veclen != xlen ) {
PyErr_SetString(PyExc_RuntimeError,
"Dimensions don't match!!");
return NULL;
}
/* Clean up. */
Py_DECREF(X_array);
Py_DECREF(x_array);
int i;
for(i = 0 ; i < nvecs ; i++) {
printf("k[%d] = %f\n",i,k[i]);
if (k[i] < 0.0) {
PyErr_SetString(PyExc_RuntimeError,
"Covariance should be positive but it isn't.");
return NULL;
}
}
npy_intp dims[1] = {nvecs};
PyObject *ret = PyArray_SimpleNew(1, dims, NPY_DOUBLE);
memcpy(PyArray_DATA(ret), k, nvecs*sizeof(double));
free(k);
return ret;
}
I have a python file called setup_cov.py
:
from distutils.core import setup, Extension
import numpy.distutils.misc_util
setup(
ext_modules=[Extension("_aux", ["_aux.c", "aux.c"])],
include_dirs=numpy.distutils.misc_util.get_numpy_include_dirs(),
)
I compile from command line using python2.7 setup_cov.py build_ext --inplace
.
Then I run the following python test file:
import numpy as np
import _aux as a
nvecs = 6
veclen = 9
X= []
for _ in range(nvecs):
X.append(np.random.normal(size= veclen))
X = np.asarray(X)
x = np.random.normal(size=veclen)
k = a.cov_vec(X,x)
print(k)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With