Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

extend a pandas datetimeindex by 1 period

consider the DateTimeIndex dates

dates = pd.date_range('2016-01-29', periods=4, freq='BM')
dates

DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29'],
              dtype='datetime64[ns]', freq='BM')

I want to extend the index by one period at the frequency attached to the object.


I expect

pd.date_range('2016-01-29', periods=5, freq='BM')

DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29',
               '2016-05-31'],
              dtype='datetime64[ns]', freq='BM')

I've tried

dates.append(dates[[-1]] + pd.offsets.BusinessMonthEnd())

However

  • Not generalized to use frequency of dates
  • I get a performance warning

    PerformanceWarning: Non-vectorized DateOffset being applied to Series or DatetimeIndex

like image 203
piRSquared Avatar asked Sep 15 '16 17:09

piRSquared


3 Answers

The best solution is:

import pandas as pd
dates = pd.date_range('2016-01-29', periods=4, freq='BM')
extended = dates.union(dates.shift(n)[-n:])

where n is the number of periods you want to add. With n=4, you will get an extended date range like this:

DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29',
               '2016-05-31', '2016-06-30', '2016-07-29', '2016-08-31'],
              dtype='datetime64[ns]', freq='BM')
like image 51
fccoelho Avatar answered Oct 02 '22 02:10

fccoelho


pandas==1.1.1 Answer for +1

To follow up on this, for pandas==1.1.1, I found this to be the best solution:

dates.union(pd.date_range(dates[-1] + dates.freq, periods=1, freq=dates.freq))

Generalised Answer Using n

n=3
dates.union(pd.date_range(dates[-1] + dates.freq, periods=n, freq=dates.freq))

Credits

Taken by combining @alberto-garcia-raboso's answer and @ballpointben's comment.

What Didn't Work

  • The following just got formatted to an Index, not a DateTimeIndex: dates.union([dates[-1] + dates.freq])
  • Also dates[-1] + 1 is deprecated.
like image 39
dylanmorroll Avatar answered Oct 02 '22 01:10

dylanmorroll


The timestamps in your DatetimeIndex already know that they are describing business month ends, so you can simply add 1:

import pandas as pd
dates = pd.date_range('2016-01-29', periods=4, freq='BM')

print(repr(dates[-1]))
# => Timestamp('2016-04-29 00:00:00', offset='BM')

print(repr(dates[-1] + 1))
# => Timestamp('2016-05-31 00:00:00', offset='BM')

You can add the latter to your index using .union:

dates = dates.union([dates[-1] + 1])
print(dates)
# => DatetimeIndex(['2016-01-29', '2016-02-29', '2016-03-31', '2016-04-29',
#                   '2016-05-31'],
#                  dtype='datetime64[ns]', freq='BM')

Compared to .append, this retains knowledge of the offset.

like image 44
A. Garcia-Raboso Avatar answered Oct 02 '22 02:10

A. Garcia-Raboso