As we all know usually negative numbers in memory represents as two's complement numbers like that
from x to ~x + 1
and to get back we don't do the obvious thing like
~([~x + 1] - 1)
but instead we do
~[~x + 1] + 1
can someone explain why does it always work? I think I can proof it with 1-bit, 2-bit, 3-bit numbers and then use Mathematical induction but it doesn't help me understand how exactly that works.
Thanks!
That's the same thing anyway. That is, ~x + 1 == ~(x - 1)
. But let's put that aside for now.
f(x) = ~x + 1
is its own inverse. Proof:
~(~x + 1) + 1 =
(definition of subtraction: a - b = ~(~a + b))
x - 1 + 1 =
(you know this step)
x
Also, ~x + 1 == ~(x - 1)
. Why? Well,
~(x - 1) =
(definition of subtraction: a - b = ~(~a + b))
~(~(~x + 1)) =
(remove double negation)
~x + 1
And that (slightly unusual) definition of subtraction, a - b = ~(~a + b)
?
~(~a + b) =
(use definition of two's complement, ~x = -x - 1)
-(~a + b) - 1 =
(move the 1)
-(~a + b + 1) =
(use definition of two's complement, ~x = -x - 1)
-(-a + b) =
(you know this step)
a - b
This is because if you increment ~x (assuming no overflow). Then converting it to back to x, you've incremented relative to ~x, but decremented relative to x. Same thing applies vice versa. Assuming your variable x has a specific value, every time you increment it, relative to ~x you'll notice it decrements.
From a programmer's point of view, this is what you'd essentially witness.
Let short int x = 1 (0x0001)
then ~x = 65534 (0xFFFE)
~x + 1 = 65534 + 1 (0xFFFF)
~(~x+1) = 0 (0x0000)
~(~x+1) + 1 = 0 + 1 (0x0001)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With