I have spent the last couple of weeks in my off-time looking at openGL. And while I do not have a problem following some of the older NeHe examples, from everything I have read, OpenGL4 is a totally different process. And I have access to the red book and the super bible, but the former is still offering legacy opengl calls where as the latter uses their own library. Neither is especially helpful in understanding how to put together code in a project. For example, my current understanding is that glu and glut are legacy and shouldn't be used for opengl 4.
I can generate vertices very easily for a hypothetical model space. I have an extremely hard time understanding how a model ends up showing up on my screen. About 95% of my attempts end up with a black blank screen.
Thanks in advance.
Here's some code:
# primatives.py
from collections import Iterable
from functools import reduce
import operator
import numpy as np
from exc import UnimplementedMethod
class Primative(object):
SIZE = 1 # number of pixels on a default grid
def __init__(self, point=None, *args, **kwargs):
self.point = point if isinstance(point, Iterable) else [0, 0, 0]
self.point = np.array(self.point, dtype=np.float32)
scaler = [self.SIZE/2]*len(self.point)
self.point = (self.point * scaler).tolist()
@property
def active(self):
attr = "__active__"
if not hasattr(self, attr):
setattr(self, attr, False)
return getattr(self, attr)
@active.setter
def active(self, value):
attr = "__active__"
if value in [True, False]:
setattr(self, attr, value)
return getattr(self, attr)
@property
def vertices(self):
"""Returns a simple list of calculated vertices"""
clsname = self.__class__.__name__
raise UnimplementedMethod(clsname)
@property
def dimension(self):
return len(self.point)
@property
def scaler(self):
attr = "__scaler__"
if not hasattr(self, attr):
size = self.SIZE / 2
setattr(self, attr, [size]*self.dimension)
return getattr(self, attr)
@scaler.setter
def scaler(self, *values):
attr = "__scaler__"
values = values[0] if len(values) == 1 else values
if len(values) == 1 and len(values) != self.point:
if isinstance(values, [int, float]):
setattr(self, attr, [values]*self.dimension)
elif isinstance(values, Iterable):
data = [(v, i)
for v, i in zip(values, xrange(self.dimension))]
value = [v for v, i in data]
if len(value) != self.dimension:
raise ValueError
setattr(self, attr, value)
@property
def translation(self):
attr = "__transalation__"
if not hasattr(self, attr):
size = self.SIZE / 2
setattr(self, attr, [size]*self.dimension)
return getattr(self, attr)
@translation.setter
def transalation(self, *values):
attr = "__transalation__"
values = values[0] if len(values) == 1 else values
if isinstance(values, (int, float)):
setattr(self, attr, [values]*self.dimension)
elif isinstance(values, Iterable):
data = [(v, i)
for v, i in zip(values, xrange(self.dimension))]
value = [v for v, i in data]
if len(value) != self.dimension:
raise ValueError
setattr(self, attr, value)
@property
def rotation(self):
"""
Rotation in radians
"""
attr = "__rotation__"
if not hasattr(self, attr):
setattr(self, attr, [0]*self.dimension)
return getattr(self, attr)
@rotation.setter
def rotation(self, *values):
"""
Rotation in radians
"""
attr = "__rotation__"
values = values[0] if len(values) == 1 else values
if isinstance(values, (int, float)):
setattr(self, attr, [values]*self.dimension)
elif isinstance(values, Iterable):
data = [(v, i)
for v, i in zip(values, xrange(self.dimension))]
value = [v for v, i in data]
if len(value) != self.dimension:
raise ValueError
setattr(self, attr, value)
@property
def volume(self):
clsname = self.__class__.__name__
raise UnimplementedMethod(clsname)
class Cube(Primative):
# G H
# * --------- *
# /| /|
# C / | D / |
# * --------- * |
# | * -------|- *
# | / E | / F
# |/ |/
# * --------- *
# A B
@property
def center_of_mass(self):
"""
Uses density to calculate center of mass
"""
return self.point
@property
def material(self):
clsname = self.__class__.__name__
raise UnimplementedMethod(clsname)
@material.setter
def material(self, value):
clsname = self.__class__.__name__
raise UnimplementedMethod(clsname)
@property
def mass(self):
return self.material.density * self.volume
@property
def volume(self):
func = operator.mul
return reduce(func, self.scaler, 1)
@property
def normals(self):
"""
computes the vertex normals
"""
norm = []
if len(self.point) == 1:
norm = [
# counter clockwise
# x (left hand rule)
(-1), # A
(1) # B
]
elif len(self.point) == 2:
norm = [
# counter clockwise
# x, y (left hand rule)
(-1, -1), # A
(1, -1), # B
(1, 1), # C
(-1, 1) # D
]
elif len(self.point) == 3:
norm = [
# counter clockwise
# x, y, z (left hand rule)
(-1, -1, 1), # A 0
(1, -1, 1), # B 1
(1, 1, 1), # D 2
(-1, 1, 1), # C 3
(-1, -1, -1), # E 4
(1, -1, -1), # F 5
(1, 1, -1), # H 6
(-1, 1, -1), # G 7
]
return norm
@property
def indices(self):
indices = []
if len(self.point) == 2:
indices = [
[[1, 0, 3], [2, 3, 1]], # BAC CDB front
]
elif len(self.point) == 3:
indices = [
[[1, 0, 3], [2, 3, 1]], # BAC CDB front
[[5, 1, 2], [2, 6, 5]], # FBD DHF right
[[4, 5, 6], [6, 7, 4]], # EFH HGE back
[[5, 4, 0], [0, 1, 5]], # FEA ABF bottom
[[0, 4, 7], [7, 3, 0]], # AEG GCA left
[[2, 3, 7], [7, 6, 2]], # DCG GHD top
]
return indices
@property
def nodes(self):
normals = np.array(self.normals, dtype=np.float32)
scaler = np.array(self.scaler, dtype=np.float32)
nodes = normals * scaler
return nodes.tolist()
@property
def vertices(self):
verts = (n for node in self.nodes for n in node)
return verts
And one more:
# Voxel.py
from collections import Iterable
from time import time
import numpy as np
import pyglet
from pyglet.gl import *
from primatives import Cube
import materials
class Voxel(Cube):
"""
Standard Voxel
"""
def __init__(self, point=None, material=None):
super(Voxel, self).__init__(point=point)
if isinstance(material, materials.Material):
self.material = material
else:
self.material = materials.stone
def __str__(self):
point = ", ".join(str(p) for p in self.point)
material = self.material.name
desc = "<Voxel [%s] (%s)>" % (material, point)
return desc
def __repr__(self):
point = ", ".join(str(p) for p in self.point)
material = self.material.name
desc = "<Voxel %s(%s)>" % (material, point)
return desc
@property
def material(self):
attr = "__material__"
if not hasattr(self, attr):
setattr(self, attr, materials.ether)
return getattr(self, attr)
@material.setter
def material(self, value):
attr = "__material__"
if value in materials.valid_materials:
setattr(self, attr, value)
return getattr(self, attr)
class Chunk(Cube):
"""
A Chunk contains a specified number of Voxels. Chunks are an
optimization to manage voxels which do not change often.
"""
NUMBER = 16
NUMBER_OF_VOXELS_X = NUMBER
NUMBER_OF_VOXELS_Y = NUMBER
NUMBER_OF_VOXELS_Z = NUMBER
def __init__(self, point=None):
point = (0, 0, 0) if point is None else point
super(Chunk, self).__init__(point=point)
self.batch = pyglet.graphics.Batch()
points = []
x_scale = self.NUMBER_OF_VOXELS_X / 2
y_scale = self.NUMBER_OF_VOXELS_Y / 2
z_scale = self.NUMBER_OF_VOXELS_Z / 2
self.rebuild_mesh = True
if len(point) == 1:
points = ((x,) for x in xrange(-x_scale, x_scale))
elif len(point) == 2:
points = ((x, y)
for x in xrange(-x_scale, x_scale)
for y in xrange(-y_scale, y_scale))
elif len(point) == 3:
points = ((x, y, z)
for x in xrange(-x_scale, x_scale)
for y in xrange(-y_scale, y_scale)
for z in xrange(-z_scale, z_scale))
t = time()
self.voxels = dict((point, Voxel(point)) for point in points)
self.active_voxels = dict((p, v)
for p, v in self.voxels.iteritems()
if v.active)
self.inactive_voxels = dict((p, v)
for p, v in self.voxels.iteritems()
if not v.active)
print 'Setup Time: %s' % (time() - t)
@property
def material(self):
return ether
@material.setter
def material(self, value):
if value in materials.valid_materials:
for voxel in self.voxels:
if voxel.material != value:
voxel.material = value
self.rebuild_mesh = True
@property
def mesh(self):
"""
Returns the verticies as defined by the Chunk's Voxels
"""
attr = "__mesh__"
if self.rebuild_mesh == True:
self.mesh_vert_count = 0
vertices = []
t = time()
for point, voxel in self.active_voxels.iteritems():
if voxel.active is True:
vertices.extend(voxel.vertices)
num_verts_in_voxel = len(voxel.normals)
self.mesh_vert_count += num_verts_in_voxel
print "Mesh Generation Time: %s" % time() - t
vertices = tuple(vertices)
setattr(self, attr, vertices)
voxel_count = len(self.active_voxels)
voxel_mesh = self.mesh
count = self.mesh_vert_count
group = None
data = ('v3f/static', vertices)
self.batch.add(count, self.mode, group, data)
return getattr(self, attr)
@property
def center_of_mass(self):
"""
Uses density to calculate center of mass. This is probably only
useful if the chunk represents an object.
"""
center = self.point
points = []
for point, voxel in self.active_voxels.iteritems():
mass = voxel.mass
if mass > 0:
point = [p*mass for p in point]
points.append(point)
points = np.array(points)
means = []
if points.any():
for idx, val in enumerate(self.point):
means.append(np.mean(points[:, idx]))
if means:
center = means
return center
def add(self, voxel):
added = False
point = None
if isinstance(voxel, Voxel):
point = voxel.point
elif isinstance(voxel, Iterable):
point = voxel
if point in self.inactive_voxels.iterkeys():
last = self.voxels[point]
self.voxels[point] = voxel if isinstance(voxel, Voxel) else last
self.voxels[point].active = True
self.active_voxels[point] = self.voxels[point]
self.inactive_voxels.pop(point)
added = True
self.rebuild_mesh = True
return added
def remove(self, voxel):
removed = False
point = None
if isinstance(voxel, Voxel):
point = voxel.point
elif isinstance(voxel, Iterable):
point = voxel
if point in self.active_voxels.iterkeys():
last = self.voxels[point]
self.voxels[point] = voxel if isinstance(voxel, Voxel) else last
self.voxels[point].active = False
self.inactive_voxels[point] = self.voxels[point]
self.active_voxels.pop(point)
removed = True
self.rebuild_mesh = True
return removed
def render(self):
voxels = len(self.active_voxels)
self.batch.draw()
return voxels
if __name__ == "__main__":
import pyglet
from pyglet.gl import *
class Window(pyglet.window.Window):
def __init__(self, *args, **kwargs):
super(Window, self).__init__(*args, **kwargs)
vox_cnt = self.setup_scene()
print 'Added: %s voxels' % (vox_cnt)
def run(self):
"""wrapper to start the gui loop"""
pyglet.app.run()
def setup_scene(self):
self.chunk = Chunk()
cnt = 0
t = time()
for x in xrange(self.chunk.NUMBER_OF_VOXELS_X):
for y in xrange(self.chunk.NUMBER_OF_VOXELS_Y):
self.chunk.add((x, y))
cnt += 1
print "Setup Scene Time: %s" % (time() - t)
return cnt
def render_scene(self):
y = h = self.height
x = w = self.width
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
# glEnable(GL_DEPTH_TEST)
# glDepthFunc(GL_LESS)
t = time()
voxels_drawn = self.chunk.render()
print 'Render Time: %s' % (time() - t)
print 'Points Rendered %s' % voxels_drawn
# array_len = len(self.vertex_data)
# glDrawArrays(GL_TRIANGLES, 0, array_len)
def on_draw(self, *args, **kwargs):
self.render_scene()
w = Window()
w.run()
There are examples in the source distributions, if you download them (link to page).
The one you want to see is in <top-dir>/examples/opengl.py
-- for a torus. If you make the following modifications you will have a cube.
# line 91:
cube.draw() # previously torus.draw()
# line 178: replace the line with the below (GL_TRIANGLES for GL_QUADS)
glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, indices)
# line 187:
cube = Cube(0.8) # previously torus = Torus(1, 0.3, 50, 30)
# replace lines 125 through 166 with:
class Cube(object):
Vertices =(0.,0.,0., 1.,0.,0., 0.,0.,1., 1.,0.,1.,
0.,1.,0., 1.,1.,0., 0.,1.,1., 1.,1.,1.)
def __init__(self, scale):
# Create the vertex and normal arrays.
indices = [0,1,3,2, 1,5,7,3, 5,4,6,7,
0,2,6,4, 0,4,5,1, 2,3,7,6]
normals = [ 0.0, -1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
-1.0, 0.0, 0.0,
0.0, 0.0, -1.0,
0.0, 0.0, 1.0]
vertices = [scale * v for v in Cube.Vertices]
vertices = (GLfloat * len(vertices))(*vertices)
normals = (GLfloat * len(normals))(*normals)
I don't know about python's class wrappers and I did not do any graphics programming for quite some time. But I know that you should search for qualified answers about real workings and internals in the community of hardware guys who either create the VHDL GPU code or write low level drivers or so. They KNOW for sure how it works and some FAQ explanation should be available already in their community.
Based on that assumption this is what some Googling gave me to start with:
OpenGL 4.4 API Reference Card - page 7 - (available among top level resources on http://www.opengl.org) shows some simple picture (for 5 years old?) with the rendering pipeline split into
Jarrred Walton's - Return of the DirectX vs. OpenGL Debates points to a 130-page slideshow How OpenGL Can Unlock 15x Performance Gains | NVIDIA Blog. Both articles fall into categories AMD,Intel,NVIDIA,Game Developer Converence
I have dome some simple OpenGL using C, C++, Delphi long ago and my recommendation is to get rid of the python mapping at first altogether. Look for suitable class library with good community with some good support only afterwards you know what you are looking for.
The above are IMHO the waters to start fishing in
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With